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Abstract 
The south-eastern part of the Bükk Mountains and the eastern side 
of its foothill, the Bükkalja are among the less explored regions of 
Hungary. Based on our examinations on the field, we found that the 
asymmetrical valley sections, the tipped escarpments and the 
formation of the Kisgyőr Basin cannot be explained by the 
differences in the rock quality. The asymmetrical shape of these 
landforms and the stream captures identified in the research area 
indicate significant structural geological changes. In our work, we 
proved the asymmetry in the topography by performing swath 
profile analysis, and we also examined the elevation data of the 
areas covered by the welded ignimbrites of the Tar Dacite Tuff 
Formation. The results confirmed our field observations. We found 
that, contrary to the results of previous research, the geological 
structural processes played a fundamental role in the formation of 
the Kisgyőr Basin and its surroundings. 
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Introduction 

 
The Kisgyőr Basin is located in the south-eastern foreland of the Bükk Mountains. During our field 

investigations, we found that in the surroundings of this basin, many valleys are asymmetrical in nature, and 
stream captures, wind gaps were also identified in the study area. In previous researches (Less et al., 2005), the 
development of the basin was explained by fluvial erosion directed by differences in rock resistance to the 
erosion, although the latter geological mapping campaigns indicated faults in the area (Radócz, 1989; Lukács et 
al., 2010). Based on our field surveys, we assumed that the valley asymmetry and the presence of such landforms 
cannot be explained simply by differences in rock quality characterised by diverse petrological properties, and 
we hypothesised that structural geological processes also played a role in the surface development of the area. 

The aim of our work was to prove this hypothesis. For this purpose, we performed swath profile analysis on a 
digital elevation model. We also analysed the elevation of the hilltops covered by the rocks of the Tar Dacite 
Tuff Formation, which rock type has a decisive role in the landscape evolution of the area. Borehole data was 
also examined to investigate tectonic movements. 

 
Materials and Methods 

 
Location 

Based on the official Hungarian landscape classification, the research area (291 km2) is situated in the 
south-eastern part of the Bükk Region, microregion group of the North-Hungarian Mountain Range region 
(Csorba et al., 2018). The north-western part of the area (65 km2) belongs to the mountainous microregion of 
South-Eastern Bükk (Hevesi, 2003), the south-eastern hills (226 km2) are located on the eastern part of the 
Bükkalja foothills microregion (Csorba et al., 2018). The boundary of the microregions can be drawn along the 
fault lines between the Mesozoic and Cenozoic rock formations (Dobos, 2000). Two submontane basins can be 
found at this boundary with different geological features and geomorphological landscapes, the Kács Basin and 
the Kisgyőr Basin (Hevesi, 2003; Pecsmány, 2017). In our research, we focused mainly on the Kisgyőr Basin 
and its southern surroundings (Fig. 1). 

 

 
Fig. 1.  Location and topography of the research area (source: EUdem). 

 
Geology and geomorphology of the research area 

The geomorphology (Hevesi, 1978, 1986, 2002a, 2002b; Hevesi & Záhorszki, 2000) and the geological 
characteristics of the Southern-Bükk (Csontos, 1988, 1999; Pentelényi, 2002, 2005; Less et al., 2005; Németh, 
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2005) and the Bükkalja (Dobos, 2002; Less et al., 2005; Vágó, 2012; Vágó & Hegedűs, 2011; Petrik, 2016; 
Pecsmány, 2017) are well known. However, the eastern side of Bükkalja has not been examined yet in detail 
from a geomorphological and geological point of view.  

This mountainous region is mostly composed of strongly karstized Triassic limestones (Berva Limestone 
Formation, Bükkfennsík Limestone Formation) with dolines, sinkholes, cave springs and less karstized cherty 
limestone (Felsőtárkány Limestone Formation) without dolines and caves (Fig. 2) (Hevesi & Záhorszki, 2000; 
Less et al., 2005). These Mesozoic rocks are covered by Cenozoic deposits in the area of the Bükkalja due to 
vertical fault displacements (Less et al., 2005; Németh, 2005; Petrik, 2016). 

There are Cenozoic sediments on the surface of the foothills: Eocene-Oligocene limestone and calcareous 
marl (Szépvölgy Limestone Formation), clay and clayey marl silt (Buda Marl Formation, Kiscell Clay 
Formation) in the north (Less et al., 2005); variable-stability Miocene pyroclastics (sometimes ignimbrite) 
produced by the periodic volcanic activity (Lukács et al., 2018) (Gyulakeszi Rhyolite Tuff Formation, Tar Dacite 
Tuff Formation, Harsány Rhyolite Tuff Formation) in the middle (Less et al., 2005; Lukács et al., 2010); 
sedimentary rocks of former Lake Pannonian (Egyházasgerge Formation, Sajóvölgy Formation, Zagyva Sand 
Formation, Edelény Variegated Clay Formation, Bükkalja Lignit Formation, Nagyalföld Variegated Clay 
Formation) in the south (Less et al., 2005) (Fig. 2). Due to the differential weathering of volcanic tuffs, there is a 
sandy, gravelly colluvium (grézes litées) on the gentle slopes (Pinczés et al., 1993), which was often redeposited 
by fluvial erosion and downhill mass movements. South of the tuff strip, with a gradual decrease in clay content, 
loess, resedimented loess, sand, gravel are common (Less et al., 2005). 

 
Fig. 2.  Geological map of the research area (Gyalog & Síkhegyi, 2005), major faults (Less et al., 2005; Németh, 2005; Petrik, 2016) 

 and location of examined boreholes. 

 

Swath profile analysis 

Swath profile analysis is statistically more reliable, improved version of cross-section analysis, which is a 
traditional method in geomorphological studies (Fielding, 1996; Kühni & Pfiffner, 2001; Korup et al., 2005; 
Stolar et al., 2007; Robl et al., 2008; Telbisz, 2011; Telbisz et al., 2012, 2013). The method has already been 
successfully applied in structural morphological research (Kovács, 2013). The breakages appearing in the 
diagrams of cross-sections and swath profiles may indicate structural causes and neotectonic processes (Keller & 
Pinter, 1996; Burnak & Anderson, 2001). 

The swath method horizontally expands the cross-section line into a rectangular swath. Based on their 
distance from the baseline of the swath, the pixels in the swath are grouped, and their statistical parameters 
(minimum, mean, maximum, quantiles) are calculated (Telbisz et al., 2011, 2013). 

In our study, two swath profiles were made at all locations. One profile was made to analyse the terrain; the 
other was made for the remnant surfaces delineated by the method of Telbisz (2009). (The method of Telbisz 
(2009) is based on the determination of local maximum values of the digital terrain model.) Both profiles, since 
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they were made in the same swath, were plotted on one diagram. In the case of the terrain, the minimum, 
maximum, and mean values were plotted by lines, while the remnant surfaces were visualised by dots (maximum 
values) (Fig. 3). 

 
Fig. 3.  Location of swath profiles and possible wind gaps (1: Geszt Creek, 2: Görömböly Creek). 

 
Results 

 
Result of swath profile analysis 

In the Southern-Bükk area, the maximum elevation values of the delineated remnant surfaces show that the 
karstic peneplain gradually steps off towards the basin (Fig. 4). Based on the position of the remnant surfaces on 
the northern edge of the Kisgyőr Basin, the fault(zone) that was already explored during structural geological 
research can be designated (Less et al., 2005; Németh, 2005). The remnants of the upper pediment framing the 
northern edge of the basin can be "connected" by a straight line to other upper pediment segments located to the 
south of the basin, with the same slope angle (Fig. 5). 

In the southern part of the basin at the tilted escarpment, another level can be designated, which cannot be 
paralleled with the remnant surfaces of the northern side with the same slope angle. The southern edge of the 
basin is bordered by an asymmetrically tilted cuesta. This is confirmed by field observations and the swath 
profile analysis (Fig.4, Fig 5). Due to the tilted position of the cuesta, we assume that the southern edge of the 
basin was also appointed by a fault. The remnant surfaces inside the basin may also have tilted along faults (Fig. 
5), as they can be connected by a straight line. The faults can be the synthetic faults of the main fault tilting the 
cuesta. These are inclined almost in the same direction as the main fault in the line of the cuesta.  

The fault on the southern edge of the basin also causes the asymmetric nature of the Tarizsa Valley (Fig. 6). 
Less et al. (2005) assumed a fault north of this valley. However, based on the morphology of this area, the fault 
might be in the valley. It cannot be ruled out that these are two different faults; this could only be verified by 
geophysical measurements. 

Based on field trips, the valleys south of the basin were perceived as asymmetric. To prove this, we 
prepared a SSW-NNE (Fig. 7) and a WSW-ENE (Fig. 8) swath profile. 

In the case of the Sály Creek, the asymmetrical character is caused by a fault, which has already been 
confirmed by seismic cross-sections (Pecsmány & Vágó, 2020). 

Figures 7 and 8 show that the Csincse Creek, leaving the basin, runs in an asymmetric valley. On the profile 
"D", the asymmetrical nature is less visible in the maximum elevation values. This may also be due to the 
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orientation of the swath profile section. Based on the average values and the position of the remnant surfaces, we 
can conclude a significant fault displacement in the case of Csincse and Geszt Creeks.  

 

 
Fig. 4.  Swath profile "A" (red: maximum elevation, green: mean elevation, blue: minimum elevation values, dots: elevation of hilltops 

delineated by the Telbisz (2009) method). 

 

 
Fig. 5.  Swath profile "A’" (red: maximum elevation, green: mean elevation, blue: minimum elevation values, dots: elevation of hilltops 

delineated by the Telbisz (2009) method). 

 

 
Fig. 6.  Swath profile "B" (red: maximum elevation, green: mean elevation, blue: minimum elevation values, dots: elevation of hilltops 

delineated by the Telbisz (2009) method). 
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Fig. 7.  Swath profile "C" (red: maximum elevation, green: mean elevation, blue: minimum elevation values, dots: elevation of hilltops 

delineated by the Telbisz (2009) method). 

 

 
Fig. 8.  Swath profile "D" (red: maximum elevation, green: mean elevation, blue: minimum elevation values, dots: elevation of hilltops 

delineated by the Telbisz (2009) method). 

 
The Kulcsárvölgy Creek runs in a valley performed by a structural element in the Kisgyőr Basin (Németh, 

2005; Less et al., 2005). In the basin, probably a fault causes the asymmetrical nature of the valley (Fig. 7). Since 
this asymmetrical shape is retained, leaving the basin, we conclude that the structural element continues towards 
the SE direction. The stream flows in the tuff strip and to the south of it in a structurally preformed valley (Fig. 
8). 

Based on field surveys and the analysis of the digital elevation model, we identified stream captures in the 
research area (Fig. 3). Swath profile analysis was performed in the abandoned valleys of these stream captures. 
As a result of this examination, morphological levels were identified in two wind gaps, which were identified as 
rock terraces (Fig. 9). 

In the abandoned valley of the Tatár-árok (Szentlászló Valley) (Fig. 9, profile "I") a morphological level 
can be identified, at the same height on both valley sides (Fig. 9, profile "I"). This abandoned valley is 
structurally preformed (Németh, 2005). Previously prepared geomorphological maps indicate several sinkholes 
in the valley (Hevesi & Záhorszki, 2000). It is probable that the Tatár-árok could originally run in the NW-SE 
direction towards the Kulcsárvölgy Creek. It probably belonged to the catchment area of the Kulcsárvölgy 
stream until the diversion. The cause of this capture was the lowering of the Sajó Valley and the rising of the 
Bükk Mountains, which caused intense headward erosion. 

In the abandoned valley of the Csincse Creek (Fig. 9, profile "II"), a morphological level can be observed 
on the side of the Meleg Hill. On the side of Halomvár Hill, this level was destroyed by erosion. The stream 
capture was caused by a fault tilting the cuestas. In our previous research (Vágó, 2012), we observed a 
breakpoint on the longitudinal profile of Csincse Creek at the location of the stream capture; it also proves its 
existence. 

In both cases, the relative height of the geomorphologic levels is 40-50 meters above the valley bottom. 
Based on the terrace morphological studies carried out in Bükkalja (Pinczés, 1957; Krolopp et al., 1989), these 
can be identified as remnants of the oldest terrace level (terrace level No. V), (Fig. 9).  

The rectangular change of direction of the Csókás Valley in the northern part of the study area (Fig. 3) can 
also be interpreted as a stream capture. During our field trips, we identified several sinkholes in and around the 
wind gap, which show the former flow direction. Both the recent and former valleys of the Csókás Creek are 
structurally preformed (Fig. 2). The formation of the stream capture was probably caused by the downfaulting of 
the current valley of the Csókás Creek and the backward erosion of a side valley.  
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Fig. 9.  Swath profiles prepared in the surroundings of the stream captures. 

 
Other methods to verify structural preformation 

 

Analysis of height conditions of Tar Dacite Tuff Formation by histogram. The histogram is the distribution 
of the elevation values of the digital elevation model. Based on the height distribution of the DEM, conclusions 
can be drawn regarding erosion surface development. By examining the elevation of each rock types, we can 
infer not only the erosional surface development but also structural processes in the case of rocks with the same 
properties (Zámolyi et al., 2010), since the different elevation of areas with the same lithological features may 
indicate structural movements. 

We successfully applied the DEM based histogram analysis in our studies for the examination of Bükkalja's 
pediment levels (Vágó & Hegedűs, 2011) and its basins (Pecsmány, 2017). 

In this investigation, the DEM based histogram analysis was performed only for the area of the middle-
volcanic complex (Tar Dacite Tuff Formation) because this formation is located in the NE-SW direction in one 
strip, and due to its petrological features (most of these rocks are welded ignimbrites) it is more resistant to 
erosion, and based on geological maps (Gyalog & Síkhegyi, 2005) it covers the hilltops of the interfluves (Fig. 
10).  

 

 
Fig. 10.  Elevation of locations covered by Tar Dacite Tuff Formation. 
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Analysing the histogram of the rock types, 6 elevation classes can be assigned. Several breakpoints can be 
observed on the histogram showing the elevation of locations covered by this lithological unit. Based on these 
breakpoints, we reclassified the DEM. It can be clearly seen (Fig. 10) that the ignimbrite patches on both sides of 
the main valleys are located at different elevations above sea level. As it is the same rock type, the asymmetric 
nature cannot be explained by denudation processes. This analysis also confirms our finding mentioned in the 
previous chapter that the main valleys running in NE – SW direction are structurally preformed. 

 
Geological borehole analysis (correlation). We analysed borehole data to investigate the structural movements 
in the catchments of Nyék, Kulcsárvölgy, Csincse and Geszt Creeks (Fig.2, Fig. 11).  

The valley of Nyék Creek is asymmetrical in the examined section. Unfortunately, we did not have enough 
borehole data in the upper and middle sections of the catchment to be able to examine the creek along a section. 
According to the data, in the M-7 borehole deepened to the north of the catchment, the lower rhyolite tuff was 
crossed at ~63 m, while in the borehole Nya-1, which was deepened within the catchment, it was crossed at ~ -
381 m. There is no direct evidence for the structural nature of the stream at this upper section. However, on the 
basis of morphology, its preformation cannot be ruled out.  

In the boreholes deepened on the valley bottom of the southern section of the Kulcsárvölgy Creek and on 
the top of its eastern interfluve, the position of the Pannonian sediments reveals significant structural 
movements. The floor level of the Nagyalföld Variegated Clay Formation is located at ~63 m in the Em-71 
borehole deepened on the western interfluve, while it is at ~51 m in the Em-17 borehole on the valley bottom. In 
the Em-70 borehole deepened on the eastern interfluve of the creek, this level is located at ~112 m. These 
differences indicate the downfaulting of the valley and the uplift of its eastern interfluve, which confirms the 
structural preformation of the valley of Kulcsárvölgy Creek. The uplift of this eastern interfluve hill is also 
proved by the floor level of the Bükkalja Lignit Formation. This level was reached at ~93 m in the Em-70 
borehole, but in the H-5 borehole deepened in the Csincse Valley, it was found at ~ -24 m. It is likely that this 
movement forced the Kulcsárvölgy and Nyék Creeks to merge. Based on these, we proved the preformation of 
the lower section of the Nyék Creek. 

The position of the Pannonian sediments refutes the structural preformation of the section of the Csincse 
Creek south of the tuff strip. However, the valley asymmetry here points to a special situation. In the H-5 
borehole deepened in the valley of Csincse Creek, the foot of the Nagyalföld Variegated Clay Formation is 
located higher than in the adjacent H-2 and Bg-2 boreholes. It is likely that the fault zone running in the Csincse 
Valley may have been active for a long period of time. We assume that before the deposition of the Nagyalföld 
Variegated Clay Formation, a narrowing lateral displacement took place in this area. As a result of this 
movement, the core of the zone emerged (Fig. 11 B). Presumably, the H-5 borehole was deepened into this 
upthrow block, which may explain the difference in elevation of floor level. After this uplift, a sedimentation 
phase took place again, which resulted in the formation of the Nagyalföld Variegated Clay Formation. Following 
the sedimentation, the fault zone reactivated, but probably with different kinematics. This structural element may 
have caused the preformation of the valley. 

The valley of the Geszt Creek is also asymmetrical. In the Bg-4 borehole deepened on the western 
interfluve hill of the stream, the floor of the Nagyalföld Variegated Clay Formation is located much higher than 
in the Bg-2 borehole deepened at the valley floor. This significant difference cannot be explained by purely 
denudation. It was probably caused by tectonic movements; however, the proof of this hypothesis requires 
further investigations. 

 
Fig. 11.  Cross-section of the borehole data (A), supposed reserve or positive flower structure in the Csincse Creek valley (B) (Twiss & 

Moores, 1992). 
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Conclusion 

 
Based on swath profile analysis performed in the research area, the Kisgyőr Basin can be interpreted as a 

structural basin. Its northern edge is bounded by a fault zone, separating the Southern-Bükk area from the 
Bükkalja. The southern edge of the basin is a structurally tilted escarpment (cuesta). The fault which caused this 
tilting can also be followed in the Tarizsa Valley, and we assume that this fault can be traced along the northern 
edge of the central-volcanic complex. The valley sections of Csincse, Kulcsárvölgy and Geszt Creeks leaving the 
volcanic strip are structurally preformed. It was proven by the existence of asymmetric valleys identified by the 
swath profile analysis and by the different elevations of areas covered by the welded ignimbrites of Tar Dacite 
Tuff Formation used as an indicator of tectonic movements. 

We proved the existence of 4 hypothesised stream captures in the abandoned valleys of the Csincse Creek, 
the Tatar-árok, Geszt Creek and Csókás Valley. We also managed to identify a morphological level (rock 
terrace) along the Csincse Creek and Tatar-árok by swath profile analysis. The formation of these landforms can 
be explained by structural processes. 

Based on our examinations, it can be concluded that the structural development of the region strongly 
influenced the formation of the landforms of the research area. 
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