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Abstract 

The accurate and reliable calculation of tonnage and quality of coal 

is vital for the success of mining projects. The Ermenek coal basin is 

located in the Western Taurus Mountains in the southern part of 

Turkey, which covers an area of approximately 620 km2 and is a 

Neogene coal basin. This paper generates spatial modeling of 

Pamuklu-Tepebaşı coal seams in the Ermenek Basin and the 

prediction of coal reserve by using geostatistical methods with 

Ordinary Kriging (OK) based on the GIS technique. The data used in 

the study were obtained from 82 boreholes belonging to a private 

company that has actively produced coal in the Pamuklu-Tepebaşı 

coalfield. In this study, the OK method was applied to spatial coal 

seam modeling for comparison of the performance of 11 distinct 

models. Using the rational quadratic models better explained the 

spatial structure of the coal seam depth data. The nugget-sill ratio 

indicated high spatial dependency with 0.01 and 0.02 for coal seam 

upper-lower surfaces, respectively. The kriged coal depth maps for 

upper and lower coal seam surfaces have been created using ArcGIS 

10.2 software. As a result of these analyses, it was calculated that 

there is a coal reserve of 3.734.017 m3 using the determined surfaces 

with OK in the study area. Furthermore, developed spatial 

distribution maps in the study area could be helpful to plan further 

exploration activities. 
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Introduction  

 

Geostatistical methodologies have been widely used in many different disciplines of engineering in recent 

years (Uyan & Dursun, 2021). Especially in mining, prediction of coal reserve or ore bodies, quality parameters 

such as grade of ore body and calorific values of coal and dimensions of coal seam and ore bodies have been 

determined by using geostatistical simulation methods (Heriawan & Koike 2008a, 2008b)(Li, Heap, Potter, & 

Daniell, 2011)(Ertunc, Tercan, Hindistan, Unver, Unal, Atalay, & Killioglu, 2013)(Olea, 2013)(Srivastava, 

2013)(Tercan & Sohrabian, 2013) (Webber, Costa, & Salvadoretti, 2013)(Li & Heap, 2014)(Jeuken, Xu, & Dowd, 

2020)(Maxwell, Rajabi, & Esterle, 2021a, 2021b). Spatial modeling is a regression technique that estimates 

properties at unknown locations based on measured values (Li & Heap, 2014). It has been stated that the Kriging 

method is the most accurate and successful technique in reserve estimation and other operations using geostatistical 

methodologies in mining (Ertunç et al., 2013)(Saikia & Sarkar, 2013)(Srivastava, 2013)(Tercan & Sohrabian, 

2013)(Olea & Luppens, 2015)(Li, 2016)(Jeuken, Xu, & Dowd, 2017)(Karacan & Olea, 2018)(Hengl, Nussbaum, 

Wright, Heuvelink, & Gräler, 2018)(Georganos, Grippa, Niang Gadiaga, Linard, Lennert, Vanhuysse, Mboga, 

Wolff, & Kalogirou, 2021)(Jeuken et al., 2020)(Maxwell et al., 2021a)(Maxwell, Rajabi, & Esterle, 2022). 

Furthermore, the Kriging is widely used as the most and as an optimal interpolation in other engineering 

disciplines. A spatial analysis that is the basis of geostatistics in many engineering disciplines has been applied 

using the GIS technique, which provides reliable, accurate, and powerful possibilities. The biggest challenge in 

predicting coal reserves in mining is the spatial uncertainty of coal seams. Due to the strong mapping and 

visualization properties of the GIS, this technique has facilitated spatial coal seam modeling and estimation of 

reserves in mining. The spatial analysis, interpolation techniques, and geospatial databases in GIS are the important 

achievement facilities used to accomplish these uncertainties and difficulties in mining (Paraskevis, Roumpos, 

Stathopoulos, & Adam, 2019)(Uyan & Dursun, 2021)(Xu & Zhang, 2023).  

In mining, reserve estimation is usually made by processing and interpreting borehole data. The classical 

geometric method was the most used method for reserve estimation in previous years. However, the classical 

geometric method is no longer preferred due to disadvantages such as indeterminate or high error rate, low 

precision of obtained data, high calculation error rate, and hard and time-consuming calculation operations. 

Nowadays, geostatistical methods are frequently used in mining for coal reserve estimation activities worldwide 

instead of classical geometric methods.  

The geostatistical methods especially various Kriging techniques have been applied to different engineering 

disciplines by using various geostatistical modules with different software (Matheron, 1963)(Krige, 1984)(Olea, 

Luppens, & Tewalt, 2011)(Wang & Haung, 2012)(Daya, 2012)(Karacan, Olea, & Goodman, 2012)(Shahbeik, 

Afzal, Moarefvand, & Qumarsy, 2014)(Jacob, Prins, & Oelofsen, 2014)(Daya, 2015)(Daya & Bejari, 2015) 

(Switon, 2015)(Pavlides, Hristopulos, Roumpos, & Agioutantis, 2015)(Thakur, Samanta, & Chakravarty, 

2016)(Gharechelou, Tateishi, Sharma, & Johnson, 2016)(Uyan, 2016)(Silva & Almeida, 2017)(Daya, 2019)(Adeli 

& Emery, 2021)(Habibirad, Roohi, Hesameddini, & Heydari, 2021). Today, the geostatistical method is frequently 

used especially in mining as well as other geosciences that are concerned with the spatial distribution of the 

regional variable. In recent studies, many researchers have preferred geostatistical methods for reserve estimation 

of coal or ore bodies in various mining areas.  

There are many types of research in the literature using a geostatistical method for the calculation of coal 

tonnage, modeling of coal seam with seam thickness, and determination of coal quality parameters such as calorific 

values, ash, sulfur and moisture contents (Tercan & Karayiğit, 2001)(Watson, Ruppert, Bragg, & Tewalt, 

2001)(Heriawan & Koike, 2008a, 2008b)(Kapageridis & Kolovos, 2009)(Hindistan, Tercan, & Ünver, 2010)(Olea 

et al., 2011)(Hatton & Fardell, 2012)(Hohn & Britton, 2012)(Ertunc et al., 2013)(Pardo-Iguzquiza, Dowd, 

Baltuille, & Chica-Olmo, 2013)(Saikia & Sarkar, 2013)(Tercan, Ünver, Hindistan, Ertunç, Atalay, Ünal, & 

Kıllıoğlu, 2013)(Webber et al., 2013)(Siddiqui, Pathan, Ünver, Tercan, Hindistan, Ertunç, Atalay, Ünal, & 

Kıllıoğlu, 2015)(Paraskevis et al., 2019)(Uyan & Dursun, 2021). 

Many researchers have applied geostatistical method for the determination of tonnage and grade of ore bodies 

in various mineral deposits (Asghari & Hezarkhani, 2006)(Salman, Ibrahim, Saffarini, & Al-Qinna, 2009)(Daya, 

2012)(Wang & Huang, 2012)(Jalloh, Kyuro, Jalloh, & Barrie, 2016)(Chanderman, Dohm, & Minnitt, 2017)(Mery, 

Emery, Caceres, Ribeiro, & Cunha 2017)(Silva & Almeida, 2017)(Abdessattar, Dimitriy, & Messaoud, 

2019)(Daya, 2019). Furthermore, some researchers have estimated various natural stone reserves using 

geostatistical methods (Onur, Konak, & Karakuo, 2008)(Yünsel, 2012)(Akeju & Afeni, 2015)(Ovinnikov, 

Kobzev, Pereverzeva, Berdichevskaya, & Vaskova, 2018)(Gusman, Muchtar, Syah, Akbar, & Deni, 2019)(Afeni, 

Akeju, & Aladejare, 2021). 

The aim of this study is spatial coal seam modeling and coal reserve estimation by using a geostatistical 

method with the GIS technique in the Pamuklu-Tepebaşı coalfield of the Ermenek basin. An economic coal seam 

stretches to the different parts of the Ermenek basin. Active working coal mines gather in two different coalfields 

named Pamuklu-Tepebaşı and Çanakçı. At present, private companies continue to produce coal in these two 

coalfields. In this study, the OK method is utilized to produce a spatial map of the lignite seam potential of the 



Arif Emre DURSUN / Acta Montanistica Slovaca, Volume 28 (2023), Number 4, 863-877 
 

865 

Pamuklu-Tepebaşı coalfield. To accurately determine the amount of coal reserve, spatial analysis with the OK 

method was applied using the input data obtained from 82 boreholes. The data used in the study were obtained 

from 82 boreholes belonging to a private sector that has actively produced coal in the Pamuklu-Tepebaşı coalfield 

of the Ermenek basin. The selected coalfield covered an area of almost 0.51 km2, and lignite coal seams located at 

depths between 9.26 m and 126.64 m; the average seam thickness is between 0.10 m and 25.80 m. 

 

Material and Methods 

 

Materials 

Geological setting of Ermenek coal basin 

The lacustrine Ermenek basin is located in the Tauride orogenic belt of southern Anatolia of Turkey, which 

is a Neogene coal basin positioned on the Late Cretaceous-Late Eocene nappe system of the Taurides Mountains. 

Fig. 1 shows a geological map of the Ermenek basin (Demirel, 1989)(Demirel & Karayigit, 1999)(Demirel, Sarac, 

& Sen, 2000)(Ilgar & Nemec, 2005). The basic formation of the Ermenek Basin is the Çakozdağı Formation, 

consisting of Jurassic-Cretaceous aged cream-beige colored recrystallized limestones, which are basement rocks 

of the Basin. They lie upon the Çakozdağı formation, highly fragile and brittle green-colored Upper Cretaceous 

aged serpentinites (ophiolitic melange). This formation has become clay from place to place as a result of advanced 

surface degradation. The serpentinites were settled in this region in the form of huge blocks by tectonic contact. 

The Eosen Tepebaşı formation upon the serpentinites consists of nummulitic limestone with dirty cream-colored 

hard layered conglomerate-sandy limestone-limestone, marl alternations. The early Miocene Yenimahalle 

Formation, including alluvial-lacustrine sediments and the economic coal seam, rests unconformably upon the 

basement. The Yenimahalle Formation consists of mudstone, sandstone, and conglomerates. The Yenimahalle 

Formation is subdivided into two members, from upward, Özlüce and Çanakçı, and consists of a coal seam that is 

seen within lacustrine sediments located at the boundary between the two members which is in a range of 0.3-6.5 

m in thickness (Fig. 1). The Özlüce member, with a thickness of 50-300 m, contains conglomerates in the lower 

part and alternations of sandstone and marl in the upper part. The Çanakçı member, 125-250 m thick, alternates 

fine-grained sandstone, marl, claystone, and sandy limestone. There is fossiliferous, carbonated, clayey, silty marl 

at the base of the coal seam. The late Burdigalian-Serravallian Mut Formation overlain the Yenimahalle formation 

and is generally characterized by reef limestones with marine fauna and karstic cavities. Quaternary alluvium 

constitutes the youngest unit in the Ermenek Basin. An economic coal seam stretches to the different parts of the 

Ermenek basin. Active working coal mines gather in two different coalfield areas named Pamuklu-Tepebaşı and 

Çanakçı. At present, private companies continue to produce coal in these two coalfield areas.  

 

 
Fig. 1. Geology map of Ermenek basin and location of study area 

 

http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html#methods
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The borehole data used in this study was obtained from 82 boreholes drilled by private companies working 

in a Pamuklu-Tepebaşı coalfield. Various data, such as collar coordinates, geological information, and coal quality 

parameters, have been obtained from these boreholes. The specialties of drilling outputs are given in Tab. 1. and 

the location of boreholes is illustrated in Fig. 2. 
 

Tab. 1. Summary of drilling activities 

Number of 

boreholes 

Total drilled 

meters (m) 
Minimum depth (m) Maximum depth (m) 

Average drill hole 

depth (m) 

82 4478 9.26 126.64 54.61 

 

 
Fig. 2. Boreholes sample location map of the study area 

 

Methods 

 

Geostatistics, as a section of statistics used for prediction methods in many different disciplines, is interested 

in spatial or spatial-time-concerned analysis to supply information about solutions to uncertainty (Heriawan, 

Hafizsyah, Hanunah, Hede, & Malik, 2020). The geostatistical methodology is based on a stochastic model that 

solves the uncertainty events using optimal predictions with interpolation techniques at unknown points in a 

selected study area. It allows us to use spatial analysis to determine the relation between connected studies and 

includes different reaching lying from conditional predictor to simulation, either parametric or indicator reaching 

(Uyan & Cay, 2013)(Uyan, 2016). 

Kriging is the best-known and most commonly used technique in geostatistics. It is used for spatial modeling 

to estimate an unknown value from a known value most accurately and reliably. In the geostatistical methodology, 

the data's spatial dispersion function is presented using variogram analysis. The basic structure of the variogram 

analysis is a method to find the similarity of two data by revealing their differences. The variogram is one of the 

basic geostatistics tools used for spatial modeling and measuring spatial autocorrelation. Kriging is a multi-stage 

method that includes a variogram analysis and statistical analysis of data for the advisor of uncertainty events, and 

it is created to a surface for replying to the analyses. There are 4 types of techniques used in the Kriging method: 
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ordinary, universal, indicator, and simple (Kisi, Mohsenzadeh Karimi, Shiri, & Keshavarzi, 2019). The OK 

technique estimates an unknown value from a known value, and one of the kriging methods was used for spatial 

coal seam modeling by using borehole data in this study. The equation of semi-variance, one of the Kriging 

functions, is used to determine the weight of the ordinary Kriging technique. An empiric semi-variance equation 

can be used to predict the nugget impact and the parameters of the semi-variance equation. This equation is 

considered a semi-variogram (Kisi et al., 2019). A semi-variogram is a fundamental operation in geostatistics 

adopted to discover the substantial spatial relationship within a certain sample group. It is an equation that defines 

the rating of spatial dependence within the data and is described as the anticipated squared increase of saved values 

between two locations (Karami, Fallah, Shataei, & Latifi, 2018). Semi‐variogram is calculated by using Eq. 1. 

(Uyan, 2016): 
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where h is the lag distance, Y(ti) is the value of the transformed data at time ti, and (N − h) is the number of pairs 

with lag distance h. A maximum lag distance over which to calculate the semi-variogram was defined to enable 

the clustering to capture differences in the temporal dependence structure.  

The general equation of the kriging method is as follows Eq. 2. (Uyan, 2016): 
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To attain just predictions in OK, the following set of Eq. 3 and 4 should be solved at the same time:      
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Here,  Z*(xp) is the kriged value at location xp, Z(xi) is the known value at location xi, λi is the weight associated 

with the data, µ is the Lagrange multiplier, and γ(xi, xj) is the value of variogram corresponding to a vector with 

origin in xi and extremity in xj. 

 

 

Results 

 

The achievement of a mining project depends on the prediction of reserve or calculation studies that are a 

basis operation that can be influential in many processes such as mine planning and decision of mining methods. 

Reserve estimation in mining is the most important parameter to decide whether the ore to be produced is 

economical and is the essential stage to start producing coal or another valuable ore. For this reason, it is essential 

to use fast and reliable methods that will minimize economic losses for reserve estimation in mining, and 

consequently, geostatistical methodologies are inevitable. The study applied spatial analysis with the OK method 

to estimate coal reserves and model coal seams based on borehole data. This spatial coal seam modeling was made 

separately for the upper and lower surfaces of the coal seams (Fig. 3). In this application, the OK method emerges 

as the most effective technique preferred for estimating unmeasured values from measured values. The OK is a 

spatial interpolation predictor applied to discover the best linear impartial prediction of a second-order stationary 

random field with an unknown constant means (Khakestar, Madani, Hassani, & Moarefvand, 2013). The statistical 

parameters were calculated to identify the variable distribution in the study area. The results of the upper/lower 

surfaces of the coal seam are shown in Table 2. These statistics give the important distribution features and define 

its center, spread, and shape. Preliminary investigation analyses were performed to evaluate correlations between 

data. Histogram graphics of the data were designed and illustrated in Fig. 4. 

 

 

http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html#results
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Fig. 3. Illustration of a coal seam 

 
 

Tab. 2. Basic statistics of the upper/lower surfaces of coal seam 
Statistics Upper Surface Lower Surface 

Count 82 82 

Minimum 814.9 813.5 

Maximum 1032.5 1030.5 

Mean 956.38 950.91 

Std. Dev. 42.64 43.50 

Skewness -1.14 -1.13 

Kurtosis 4.74 4.71 

1st Quartile 941.7 933.5 

Median 960.43 955.82 

3rd Quartile 986.15 978.12 

 

 

 
Fig. 4. Histograms of the upper/lower surfaces of coal seam 

 

For the data to show a normal distribution, it is desired that the data are close to the mean and the median. 

Looking at the statistics, mean and median values are 956.38 m and 960.43 m, respectively, on the upper surface. 

The data here are far from each other; therefore, it is thought that the data do not show a normal distribution. The 

mean and median values for the lower surfaces are 950.91 m and 955.82 m, respectively. According to these 

values, lower surface data is thought that the data do not show normal distribution. Since the skewness values are 

-1.14 (Upper Surface) and -1.13 (Lower Surface), it can be said that the data distribution is skewed. Since the 

kurtosis should be 3 for an ordinarily dispersed data set, it is realized that the data are not ordinarily dispersed in 

the study for the values of 4.74 and 4.71. The obtained data can be used directly for analysis, or prediction can be 

made with data approaching normal dispersion by log conversion. Summary statistics and histograms obtained 

from logarithmically converted data are given in Table 3 and illustrated in Fig 5. The distribution of data of the 

coal surface is out of normal. Taking logarithms removes the disruptions (Tab. 3.), but it gives a much flatter 
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distribution than usual. It can only transform the general shape of the distribution, not the detail (Gaus, Kinniburgh, 

Talbot, & Webster, 2003). Geostatistics supplies descriptive tools such as semi-variograms to qualify the spatial 

model of uninterrupted and categorical characteristics. Varied interpolation techniques benefit from the spatial 

correlation between observations to predict feature values at unsampled locations using data regarding one or 

several features (Panagopoulos, Jesus, Antunes, & Beltrao, 2006)(Cichon, 2016). 

 
Tab. 3. Basic statistics of the log-upper/lower surfaces of coal seam 

Statistics Upper Surface Lower Surface 

Count 82 82 

Minimum 6.70 6.70 

Maximum 6.94 6.94 

Mean 6.86 6.86 

Std. Dev. 0.05 0.05 

Skewness -1.31 -1.31 

Kurtosis 5.18 5.10 

1st Quartile 6.85 6.84 

Median 6.87 6.86 

3rd Quartile 6.89 6.89 

 

 

 
Fig. 5. Histograms of the log-upper/lower surfaces of coal seam 

 

This study specified the empirical semi-variogram for the upper and lower surfaces of coal seams by ArcGIS 

10.2 software. Spatial variation was considered isotropic in this study. Whether there is a trend in the data was 

analyzed by ArcGIS 10.2 software. A dataset of coal characteristics was composed of their georeferenced position 

obtained from boreholes in the selected coalfield. The data dispersions were examined before producing surface 

diagrams to understand trends and directional effects better. Fig. 6 illustrates the results of trend analysis before 

utilizing the Kriging method. A trend for the analysis parameters was determined, pointing out that trend-taking 

away was essential to produce more precise prediction maps. Trend remoting stage assisted in normalizing data 

dispersion. OK was performed after the trend was removed from the data. The performance of eleven models 

(Circular, Spherical, Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational Quadratic, Hole effect, K-

Bessel, J-Bessel, and Stable) were compared for OK. For these reasons, each model was assessed with raw data 

and log data, and the most suitable results were procured (Tab. 4.). 

Cross-validation was used to predict which semi-variogram models would yield the most accurate estimates 

of unknown values in the study area. A summary of the indicators that assist in selecting the most appropriate 

semi-variogram model for generating the forecast maps is given in Tab. 4. The mean error (ME) gives a deflection 

of predicted value, the average standard error (ASE) and root-mean-square error (RMSE) give the accuracy 
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between the predicted and measured values, and the mean standardized error (MSE) and root-mean-square 

standardized error (RMSSE) give the accuracy of the standard error (Qin et al., 2020). 

The estimations for a good-fitting semi-variogram are ME near 0, RMSSE near 1, and ASE-RMSE near each 

other (Uyan, 2016). The eleven models given in Table 4 were applied again for every parameter working following 

the rules referred to above, and it was selected a semi-variogram model for each one to indicate how the samples 

were related to each other. 

 

 
Fig. 6. Trend analysis demonstrating a North to South and an East to West trend for the upper-lower surface of coal seam 

 

The final semi-variogram model selected for the prediction map of each parameter analyzed is given in Tab. 

5. According to the results derived from cross-validation, the most fitting model for the experiential variogram is 

"Rational Quadratic".  

The ratio of nugget to sill is used to determine the spatial dependency of variables. The spatial dependency is 

high if the ratio is lower than 25%. The spatial dependency is moderate if the ratio is between 25 and 75 %. The 

spatial dependency is low if the ratio is more than 75 % (Ramirez-Davila, Porcayo-Camargo, Sanchez-Pale, & 

Vázquez-García, 2012). The ratio showed a high dependency with 0.01 (1%) and 0.02 (2%) for upper and lower 

coal seam surfaces, respectively, for the study area. 

In geostatistics, the slope of the regression line, taking into account the true value and the predicted value, is 

often used as a diagnosis for predictive accuracy. Ideally, the slope of this line should be equal to 1. This value 

cannot be reached due to estimation errors. The slope value is always less than 1. The regression line is an 

approximate value that will generally not equal the 1:1 line. Proximity to this value is an indication of sensitivity. 

Fig. 7 shows the regression lines for predicted values according to the 1:1 line. Regression lines for the upper and 

lower coal seam surfaces were determined as y = 0.95x + 46.40 and y = 0.95x + 44.46, respectively. These values 

are very reliable, with a deviation of 5%. The kriged coal depth maps for the upper and lower surface are shown 

in Fig. 8 using ArcGIS 10.2, GIS software. As a result of these analyses, it was calculated that there is a coal 

reserve of 3.734.017 m3 using the determined surfaces with OK in the study area. 

 

 
Fig. 7. Least-squares regression line and the 1:1 line between the measured and the predicted coal depth values 
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Tab. 4. Valuation results for different formations of data 

U
P

P
E

R
 S

U
R

F
A

C
E

 

Model  Data Nugget Sill Range ME RMSE MSE RMSSE ASE R2 

Circular 
Raw 0 4185.39 1138.15 -0.13 10.24 -0.05 0.79 15.21 0.93 

Log 0 0 1138.15 -0.09 10.24 -0.02 0.78 15.37 0.93 

Spherical 
Raw 0 3651.13 1138.15 -0.13 10.24 -0.06 0.78 15.43 0.93 

Log 0 0.004 1138.15 -0.10 10.24 -0.01 0.76 15.60 0.93 

Tetraspherical 
Raw 0 3313.66 1138.15 -0.14 10.24 -0.06 0.77 15.65 0.93 

Log 0 0.004 1138.15 -0.10 10.24 -0.002 0.75 15.82 0.93 

Pentaspherical 
Raw 0 3079.63 1138.15 -0.14 10.24 -0.06 0.76 15.86 0.93 

Log 0 0.004 1138.15 -0.10 10.24 -0.002 0.74 16.04 0.93 

Exponential 
Raw 0 2837.71 1138.15 -0.12 10.52 -0.07 0.64 18.98 0.91 

Log 0 0.003 1138.15 -0.05 10.52 0 0.62 19.27 0.91 

Gaussian 
Raw 170.64 5131.50 1043.59 0.89 10.24 0.07 0.71 14.43 0.88 

Log 0 0.006 1061.851 0.90 10.02 0.08 0.77 13.18 0.94 

Rational quadr. 
Raw 42.39 2866.37 1138.15 -0.84 9.98 -0.06 1.12 10.11 0.95 

Log 0 0.003 1138.15 -0.93 10.24 -0.07 1.28 9.24 0.93 

Hole effect 
Raw 121.12 3184.57 1138.15 0.97 9.87 0.10 0.81 12.36 0.92 

Log 0 0.004 1138.15 0.96 9.81 0.10 0.84 12.02 0.93 

K-Bessel 
Raw 122.06 4359.39 1138.15 0.28 9.56 0.04 0.76 12.98 0.90 

Log 0 0.006 1138.15 0.65 9.73 0.07 0.79 12.62 0.95 

J-Bessel 
Raw 116.62 3631.59 1138.15 0.81 9.76 0.08 0.81 12.28 0.92 

Log 0 0.004 1138.15 0.92 9.77 0.09 0.83 12.01 0.92 

Stable 
Raw 115.68 4833.77 1138.15 0.13 9.56 0.02 0.73 13.49 0.95 

Log 0 0.006 1138.15 0.14 9.49 0.03 0.78 12.65 0.95 

            

            

L
O

W
E

R
 S

U
R

F
A

C
E

 

Model  Data Nugget Sill Range ME RMSE MSE RMSSE ASE R2 

Circular 
Raw 0 4312.17 1138.15 -0.11 11.27 -0.004 0.84 15.44 0.89 

Log 0 0 1138.15 -0.09 11.26 0 0.83 15.60 0.90 

Spherical 
Raw 0 3763.34 1138.15 -0.12 11.27 -0.004 0.83 15.66 0.89 

Log 0 0 1138.15 -0.09 11.26 0 0.82 15.83 0.90 

Tetraspherical 
Raw 0 3416.96 1138.15 -0.13 11.27 -0.004 0.82 15.88 0.89 

Log 0 0 1138.15 -0.09 11.27 0 0.80 16.06 0.90 

Pentaspherical 
Raw 0 3176.95 1138.15 -0.13 11.27 -0.005 0.81 16.10 0.89 

Log 0 0 1138.15 -0.10 11.27 0 0.79 16.29 0.90 

Exponential 
Raw 0 2935.25 1138.15 -0.11 11.53 -0.005 0.68 19.30 0.88 

Log 0 0 1138.15 -0.03 11.53 0 0.66 19.60 0.89 

Gaussian 
Raw 157.16 5536.58 1061.85 0.98 10.70 0.08 0.77 13.89 0.90 

Log 0 0.01 1138.15 1.01 10.61 0.09 0.81 13.19 0.91 

Rational quadr. 
Raw 46.76 2949.35 1138.15 -1.04 10.75 -0.06 1.17 10.48 0.95 

Log 0 0 1138.15 -1.16 10.99 -0.08 1.33 9.54 0.93 

Hole effect 
Raw 125.31 3248.45 1138.15 1.01 10.48 0.10 0.84 12.56 0.91 

Log 0 0 1138.15 0.99 10.40 0.01 0.87 12.17 0.92 

K-Bessel 
Raw 126.42 4809.37 1138.15 0.48 10.27 0.05 0.81 12.97 0.93 

Log 0 0.01 1138.15 0.89 10.46 0.09 0.83 12.83 0.91 

J-Bessel 
Raw 124.07 3707.74 1138.15 0.93 10.44 0.09 0.84 12.56 0.91 

Log 0 0 1138.15 0.97 10.39 0..01 0.87 12.18 0.92 

Stable 
Raw 114.88 5133.34 1138.15 0.17 10.32 0.03 0.79 13.31 0.92 

Log 0 0.01 1138.15 0.39 10.28 0.05 0.82 12.87 0.93 

From the cross-validation of the models were used the mean error (ME), root-mean-square error (RMSE), mean standardized error (MSE), root-mean-square 

standardized error (RMSSE), average standard error (ASE) and regression coefficient (R2) 
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Tab. 5. Results of the semi-variogram selected to produce the prediction maps 

 
Model Data Nugget Sill Range ME RMSE MSE RMSSE ASE R2 Nugget/Sill 

U
p

p
e
r
 

su
r
fa

ce
 

Rational 

quadr. 
Raw 42.39 2866.37 1138.15 -0.84 9.98 -0.06 1.12 10.11 0.95 0.01 

L
o

w
er

 

su
r
fa

ce
 

Rational 

quadr. 
Raw 46.76 2949.35 1138.15 -1.04 10.75 -0.06 1.17 10.48 0.95 0.02 

 

 

 
 

 
Fig. 8. Coal deposit map obtained by ordinary kriging estimation for upper and lower surfaces of coal seam 
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Conclusions 

 

Energy is an important factor for sustainable development and poverty eradication. Depending on the need 

for increased production, as Turkey's population grows and technological advances, energy demands are increasing 

daily. Countries competing in the global economic structure aim to meet their energy needs most efficiently and 

at the lowest cost. For this reason, the resource's cost must be considered when determining the preferred energy 

source. The electricity generation of coal-based thermal power plants is 20.4% of Turkey's total installed electricity 

generation capacity. The first two national energy resources in Turkey are hydraulic energy and natural gas. 

However, it imports all of the natural gas, which second ranks in electricity generation in Turkey, from other 

countries and spends serious money. Turkey has high coal reserves where coal must be used for electricity 

generation. For this reason, this study aims to attract attention to the use of geostatistical methods that are faster 

and the most reliable method frequently used in recent years, which is to determine the important coal reserves of 

Turkey. 

Today, reserve estimation in mining projects is usually determined by processing and interpreting drilling 

data. Reserve estimation is extremely important in the success of mining projects. Reserve estimation that is far 

from precision can lead to bad consequences for the business. Therefore, reliable and important resource estimates 

from all over the world are attached. In mining studies, the Kriging method is one of the frequently used models 

to estimate the reserve most accurately. In this study, the OK method is utilized to produce a predictive map of the 

lignite potential of the Pamuklu-Tepebaşı coalfield. To accurately determine the amount of coal reserve, spatial 

analysis with the OK method was applied using the input data obtained from 82 boreholes. Cross-validation was 

used to predict which semi-variogram models could accurately estimate the unknown values. Cross-validation 

showed that the most suitable model for the experimental variogram is circular. The ratio of nugget to sill is used 

to determine the spatial dependency of variables. The spatial dependency is strong if the ratio is less than 25%. 

The ratio showed a high dependency with 0.01 and 0.02 for upper-lower surfaces, respectively, for this study. The 

kriged coal depth maps for upper and lower coal seam surfaces have been created using ArcGIS 10.2 software. As 

a result of spatial analysis, it was calculated that there is a coal reserve of 3.734.017 m3 using the determined 

surfaces with the OK in the study area. 

In Ermenek coalfields, the Kriging methods have not yet been applied to coal reserve estimation and spatial 

coal seams modeling. Instead of the Kriging method, the classical geometric method was applied to calculate coal 

reserves. However, the dimensions of coal seams, amount of coal, and other parameters have not been determined. 

For this reason, this study has emphasized taking into account the spatial analysis of coal reserve estimation in the 

Ermenek Basin. Thus, by preventing the wrong reserve calculation and the production of coal seams without 

knowing the size and depth, both economic losses will be prevented, and producers will be helped to make their 

future plans accurately and reliably. This study is aimed to be a guide for other areas related to geosciences in 

Turkey for modeling coal seam or ore bodies using one of the geostatistical methods, ordinary kriging with GIS 

technology. 
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