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Abstract 

In recent years, belt conveyors have been among the most widespread 

means of transport in the mining industry, and because of this, they 

are developing very quickly in terms of design. The key element of 

the belt conveyor is its drive unit. Random vibrations of the belt 

conveyor drive pose a great risk of downtime. The solution is to 

minimize dangerous vibrations occurring in the belt conveyor drive 

by predicting their occurrence using dynamic models. The article 

presents a complete dynamic model that describes the real 

mechanical system and its verification by the method of reducing the 

number of degrees of freedom of replacement dynamic torsion 

systems. When creating models, the method of partial frequencies is 

applied to a six-mass mechanical system. Subsequently, the 

calculation of the reduced new system is compared with the 

calculation of the original system. At the same time, a simulation 

calculation approach in the MATLAB program is also applied. The 

calculations aim to determine the specific angular frequencies and 

mode shapes for each degree of reduction and system type. The 

calculation model using the Holzer tabular method is verified by 

calculation in the MATLAB simulation program. Both approaches 

provide good technical accuracy with a tolerance of up to 5 %. 
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Introduction 

 

An efficient process of transporting raw materials by conveyor belt is possible only with the correct and 

undisturbed operation of conveyors and their components. Continuous monitoring of the conveyor is essential to 

ensure its safe operation. Conveyor belt transport represents an important transport system in a wide range of 

operations, especially in the extraction and processing of mineral resources. Important decisions in optimizing the 

operation of belt conveyors using the AHP method were described in the publication (Andreiová et al., 2015). In 

order to select suitable modifications to the design parameters of the belt conveyor, the drive was determined to 

be the most important structural element. The application of generally valid logistics principles when designing a 

conveyor belt logistics system can also increase the efficiency of the transport process. The authors' case study 

(Ambriško et al., 2015) presents the application of the general procedure of logistics system designing as a suitable 

method for deciding on possible changes in the examined belt conveyor system. During the transportation of raw 

materials belt conveyors, physical phenomena take place influenced by the vibrations of drums and rollers, which 

are considered mechanical oscillations with relatively low amplitude and relatively high frequency. Unexpected 

mechanical failures of the rotating masses of the belt conveyor during operation can lead to long downtime 

(Bortnowski et al., 2023), (Ambriško et al., 2023). Currently, thermal imaging is widely used as a simple approach 

to determine the operating state of a belt conveyor drive system design based on anomalies in thermographs 

(Szurgacz et al., 2021), (Dabek et al., 2022), (Pytlik and Trela, 2016). For the prevention of disorders, many 

methods for diagnosing disorders based on vibrational or vibroacoustic signals are described in the literature (Yu 

et al., 2022), (Jia et al., 2019), (Alharbi et al., 2023), (Nawrocki et al., 2023). Czech et al. (2014) examined 

diagnostics of damage to mechanical elements using vibration signals and artificial neural networks. Łazarz et al. 

(2011) used vibroacoustic problem-solving to detect gearbox component malfunctions. Likewise, the diagnosis of 

belt conveyor roller faults is mostly based on acoustic and vibration signals (Alhabri et al., 2023), (Li et al., 2013), 

concerns the use of vibration to detect roller faults, thermal methods present (Liu et al., 2020), and acoustic 

methods for detecting faults in belt conveyor systems (Wijaya et al., 2022), (Qurthobi et al., 2022). In a study by 

Zhang et al. (2023), mechanical faults of rollers were detected by a non-contact method of diagnosis using acoustic 

signals using MFCC (Mel-frequency Cepstral Coefficient) and weighted error detection SVDD (Support Vector 

Data Description) based on sample centre distance. 

Alhabri et al. (2023) present an overview of fault detection using machine learning models based on acoustic 

and vibration signals for belt conveyors. Machine learning for vibration diagnostics was also applied by the authors 

Nowakowski et al. (2022). During the operation of belt conveyors, due to the large number of rotating masses, 

noise is also generated that spreads to the surroundings. Risk assessments depending on the sources of noise caused 

by conveyor systems were evaluated by Piňosová et al. (2018) and Thai et al. (2021). Many factors affect conveyor 

noise. The main noise sources of the belt conveyor include rotating masses such as roller bearings (Ladanyi, 2016). 

Added to this is the noise from the belt conveyor design, which is vibrated by the transmission of roller oscillations 

through their holders and also by the effect of material impact on the conveyor belt at the point of overflow 

(Ullmann et al., 1998), (Bortnowski et al., 2021). Upon impact of the material, the conveyor belt can be considered 

as a thin isotropic plate. Klimenda et al. (2022) derived the behaviour of thin isotropic plates under impact load 

and transverse wave propagation analytically in the MATLAB software environment. They compared the 

Kirchhoff and Rayleigh models in terms of shifts, speeds, and normal voltages. Another source of noise and 

vibration is the conveyor belt. An experimental study (Bortowski et al., 2022) demonstrated a significant effect of 

conveyor belt speed on noise and vibration emission. Noise emitted by machinery and equipment is also regulated 

by European Union directives (Directive 2000/14/EC) (Directive 2010/75/EU).  

The process of continuous material feeding in conveyor belt is of great importance for both mining and 

processing industries (Zivanic et al., 2021). Fluctuations in material flow on the conveyor belt lead to harmful 

vibrations on both the belt and the conveyor. Zeng et al. (2020) proposed a dynamic model in terms of conveyor 

belt speed control during uneven transport of bulk material. They verified the model by using experimental 

measurements to analyze the mechanical behaviour of the belt. The research results confirmed the correctness of 

the models, and with the help of the proposed models, it is possible to optimize the operating procedures of belt 

conveyor systems. According to Ambrożkiewicz et al. (2021), one of the most common causes of vibration is the 

blockage of the rollers and, consequently, damage to the roller bearing. Current research is focused on expert fault 

diagnosis systems based on noise and vibration monitoring (Yang et al., 2020), (Skoczylas et al., 2021), (Bortowski 

et al., 2022).  

For belt conveyors, transverse vibrations of a moving belt are particularly dangerous (Harrison, 1986). 

Frequent stopping and lowering of the conveyor adversely affect the service life of conveyor drive gearboxes, 

couplings, and bearings (Hou et al., 2008), (Pang and Lodewijks, 2013). Guohuan et al. (2011) describe the drive 

system of long belt conveyors with variable frequency and adjustable speed. In the research into the vibration of 

belt conveyors, the method of virtual prototyping is currently also used. The dynamic simulation of a belt conveyor 

based on virtual prototyping is presented in the publication by Guo et al. (2010). Likewise, Yan and He (2010) 

created a belt conveyor model and performed a dynamic analysis of it using virtual prototype technology. The 
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results of their research point to a new approach to analyzing the safety and structure of belt conveyors. Bortowski 

et al. (2022) proposed an LSTM neural network algorithm to automate the process of detecting anomalies of the 

recorded diagnostic signal based on a specified time series in identifying roller damage. This detection algorithm 

has been verified under both laboratory and in-situ conditions.  

The appearance of vibrations on the belt conveyor can also be caused by misalignment of the location of the 

drive and return stations. Belt and structure vibrations can be caused by suboptimal drive operation due to the lack 

of soft-start devices, the drive unit's vibration, and the motors' non-synchronous operation (Damnjanović et al., 

2017). Ojha et al. (2014), based on spectrum analysis and vibration measurements, found high axial and radial 

vibrations that were caused by a combination of parallel and angular misalignment between the engine and 

gearbox.  

From the above overview of the current state of formation of vibrations and methods for measuring them in 

belt conveyors, it can be stated that various types of vibration sources contribute to the occurrence of vibrations in 

the structural parts of the belt conveyor, mainly imbalance of drums, misalignment, mechanical clearance of drum 

and roller bearings, resonance of the structure, excessive wear of roller bearings, etc.  

In torsion-oscillating mechanical systems comprising flexible elements, dangerous torsional oscillations can 

be reduced to an acceptable extent by appropriate adaptation of dynamic properties (i.e., stiffness, damping, and 

moments of inertia) of these members of the system dynamics (Homišin and Moravič, 2016). Due to the inertial 

forces and variable torque of individual machines and equipment, dangerous torsional oscillations occur. Tuning 

of the mechanical system and avoidance of resonance by changing the stiffness value of a flexible element in the 

system was examined by Homišin and Moravič (2016). The results of vibration frequency measurements provide 

the information necessary for the correct operation of the conveyor. Distributed sensors can also be used to measure 

vibrations. Novotný et al. (2021) describe the application of a distributed remote sensing system using standard 

telecommunications single-mode optical fibre for distributed mechanical vibration sensing. According to Grega et 

al. (2018), torsional vibration reduction is possible by using new flexible coupling designs. Experiments verified 

the influence of pneumatic couplings filled with helium and propane-butane under laboratory conditions on the 

mechanical system.  

This study proposes dynamic models for minimizing and partially eliminating vibrations to eliminate belt 

conveyor failures due to vibration and ensure its normal operation. 

 

Materials and methods 

 

Description of the mechanical system 

The main structural parts of belt conveyors include the drive station, return station, tensioning station, support 

rollers, conveyor belt, and supplementary and protective devices. The drive station is one of the most important 

parts of the belt conveyor, as it ensures the movement of the conveyor belt. The classic belt conveyor drive station 

consists of separate structural parts: an electric motor, couplings, gearbox, and drive drum with bearings. All these 

components are mounted on a separate supporting frame (Fig. 1). 

 

 

Fig. 1. The classic concept of a belt conveyor drive station: 

1 – frame structure, 2 – electric motor, 3 – belt drive, 4 – gearbox,5 – flexible coupling, 6 – drive drum. 

The simplest power station is one power unit and a power drum. This configuration is sufficient for lightly 

loaded, short conveyors. Most conveyors have two, three, or four drive units and two drive drums. The task of belt 

conveyor drive is to transfer the power of the driving machine to one or more drive drums.  

The mechanical system (Fig. 1) is driven by an asynchronous electric motor with torque-speed characteristic 

MAM. At the output is a working appliance of power with load torque MZ. Power from the electric motor is 

transmitted by belt drive through the gearbox to the drive drum shaft of the conveyor. The drive and driven part 

of the mechanical system is connected to a belt drive, a two-stage gearbox, and a flexible coupling. The coupling 

provides the transmission of load torque. 
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Theoretical basis of the partial frequency method 

In order to calculate the dynamic properties of aggregates, it is necessary to replace the aggregate with an 

auxiliary system describing, to some extent, the actual system before compiling the equations of motion. From the 

experience of calculations of torsional oscillations of aggregates (Grega et al., 2019), it is possible to replace these 

aggregates with systems containing mass discs connected by intangible shafts. The masses of the cranks are 

considered constant. Also, the stiffness between individual masses is constant. Despite various steps of 

assumptions that things can be neglected, the substitute systems are quite complex. When calculating dynamic 

phenomena during the engine's starting or stopping, the calculation's main structure is the stress on the flexible 

couplings. Here, it is advisable to simplify the system so that the stresses on the couplings can be determined. 

When calculating at a steady state, it is necessary to perform the calculation on the complex system since the 

purpose of the calculation is to determine the stresses of the elements (crankshafts). Several methods for 

simplifying replacement torsion systems have been developed, such as the method of the centre of gravity of 

moments of inertia and the method of partial frequencies. According to Rivin (1966), the second method is 

designed to calculate lower natural frequencies and mode shapes of the torsion system with greater degrees of 

freedom. Simplification must be carried out in such a way that the error is as small as possible. 

The partial frequencies method is a method of reducing complex systems to a simple reduced system (Utěkal, 

1973), (Chen et al., 2020). This method is based on substituting subsystems consisting of two masses connected 

by a shaft or systems with one mass and two torsional stiffnesses (Rivin, 1966). 

For each type of system 𝛼 and 𝛽, a reduction to a maximum of a two-mass system is possible. 

A mechanical system model with n-degrees of freedom can be converted into a system with 𝑚 < 𝑛 degrees 

of freedom. For each partial system, calculate the partial natural angular frequency according to the relation 

(Utěkal, 1973): 

I

k
=2 . (1) 

Systems to which the following applies 

2 > 𝜔2 , (2) 

are converted into equivalent partial systems of the second type. These systems are then added to the core system.  

We get a simplified system that has one degree of freedom, i.e., one less frequency of its own. This procedure 

can be repeated several times until a reduction in the number of masses to three or two is achieved. Once simplified, 

it becomes easier to calculate natural angular frequencies and mode shapes. 

 

Calculation models 

 

Mathematical model of a mechanical system 

Dynamic analysis is used to assess the vibration rate in the system. When performing this dynamic analysis, 

the system is replaced by a mathematical model (Fig. 2), which consists of mass bodies connected by linear springs 

with stiffness k. 

The principal representation of the torsion-oscillating mechanical system, specifically the belt conveyor drive, 

is shown in Fig. 2. Descriptions of individual quantities for Fig. 2 are given in Tab. 1. 

The members of the system in Fig. 2, denoted as k, represent flexible terms, and I with indices are masses. 

The stiffness of the spur gears kZ teeth is very great relative to that of the coupling kS, belt kR, and conveyor belt 

kP. After reducing it to a high-speed shaft and neglecting the flexibility of the gear teeth, we obtain a dynamic 

model according to Fig. 3, where the individual masses show the drive system of the belt conveyor. 

 

 
Fig. 2. Complete substitute for belt conveyor drive torsion system. 

 
Tab. 1. Description of parameters for Fig. 2. 
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Parameter Meaning 

𝐼𝐴𝑀 Moment of inertia of electric motor (asynchronous motor) 

𝐼𝑂𝐾1, ... , 𝐼𝑂𝐾4 Moment of inertia of individual gears in the gearbox 

𝐼𝑅𝐴 Moment of inertia of a small pulley 

𝐼𝑅𝐵 Moment of inertia of a large pulley 

𝐼𝑅 Moment of inertia of belts reduced to a small pulley 

𝐼𝑆𝐴 Moment of inertia of the flexible coupling flange on the gearbox side 

𝐼𝑆𝐵 Moment of inertia of the flexible coupling flange on the drive drum side 

𝐼𝐵1 Moment of inertia of the drive drum 

𝐼𝐵2 Moment of inertia of driven drum 

𝐼𝑃 Moment of inertia of the mass of material on the belt reduced to the drive drum 

𝑘𝐻1 Torsional stiffness of the shaft between 𝐼𝐴𝑀and 𝐼𝑅𝐴 

𝑘𝐻2 Torsional stiffness of the shaft between 𝐼𝑅𝐵 and 𝐼𝑂𝐾1 

𝑘𝐻3 Torsional stiffness of the shaft between 𝐼𝑂𝐾2and 𝐼𝑂𝐾3 

𝑘𝐻4 Torsional stiffness of the shaft between 𝐼𝑂𝐾4 and 𝐼𝑆𝐴 

𝑘𝐻5 Torsional stiffness of the shaft between 𝐼𝑆𝐵 and 𝐼𝐵1 

𝑘𝑅 Torsional belt stiffness 

𝑘𝑆 Torsional stiffness of the flexible coupling 

𝑘𝑃 Torsional stiffness of the conveyor belt 

𝑘𝑍1−2, 𝑘𝑍3−4 Stiffness of spur gear teeth 

𝑀𝐴𝑀 Electric motor torque 

𝑀𝑍 Load torque  

 

The method is applied to a six-mass mechanical system (Fig. 3). In this case, the calculation performed is 

only a substitute for a system of type α for a system of type β. The input values are in Tab. 2 after the initial 

reduction to a high-speed shaft between rotating masses IAM and IRA + IR. 

 

 

Fig. 3. Six-mass system. 

 
Tab. 2. Moments of inertia and stiffness of the system. 

i Ii [kg·m2] ki [N·m·rad–1] 

1 0.04279 1604.020 

2 0.05378 1060.240 

3 0.00279 0149.350 

4 0.00048 0016.674 

5 0.05747 0008.914 

6 0.05734 –– 

 

Simulation model of the mechanical system 

The dynamic model of the mechanical system in Fig. 3 is described by differential equations of motion that 

have been rewritten to the moment of inertia matrix I and the stiffness matrix k and entered as inputs to the 

MATLAB simulation program. 

Fig. 4 describes the principle of operation of the algorithm used to calculate the quantities by the partial 

frequencies method in the MATLAB program. 
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Fig. 4. Calculation algorithm in MATLAB. 

 

Calculations and results 

 

Calculation procedure 

The calculation procedure is shown schematically in Fig. 5. First, we divide the system into type subsystems 

and calculate the natural angular frequencies according to the relation in Moravič (2017). Since the highest natural 

angular frequency has manifested itself in a system formed by discs 𝐼2 and 𝐼3, we replace it with a system of type 

β using equations in Moravič (2017). We incorporate the new system into the original system to obtain a five-mass 

system. Repeating the above procedure, we obtain a two-mass system. 
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Fig. 5. Progressive simplification of the six-mass system to the two-mass system. 

 

Calculation results 

The results of the calculation of natural angular frequencies are shown in Tab. 3. The progressive 

simplification error is indicated by the symbol 𝛥𝑖, expressed in %, and related to the natural angular frequency 

of the original six-mass system. The (+) sign in the column indicates an increase, and the (−) sign indicates the 

decrease of the new value of the natural angular frequency relative to the original. 

 
Tab. 3. Calculated natural angular frequencies of a six-mass system with a gradual reduction to a set of two  

rotating masses of the belt conveyor (RMBC). 

 

Fig. 6 shows a graphical representation of the mode shape of the oscillation of the first natural angular 

frequency for the six-mass system and Fig. 7 for the second natural angular frequency. In Fig. 6 and Fig. 7, the 

amplitudes of masses are plotted on the vertical axis and the position of the individual masses on the horizontal 

axis. The position of the masses is characterized by their distance from each other, which represents the flexibility 

of the shafts. The values of the observed quantities given in Fig. 6 and Fig. 7 were calculated using the Holzer 

tabular method (Tab. 4 and Tab. 5). 

N
u

m
b
er

 o
f 

R
M

B
C

 

1 

[rad·s−1] 

1 

[%] 

2 

[rad·s−1] 

2 

[%] 

3 

[rad·s−1] 

3 

[%] 

4 

[rad·s−1] 

4 

[%] 

5 

[rad·s−1] 

5 

[%] 

6 12.36 0,00 23.73 0,00 255.68 0,00 514.34 0,00 732.41 0 

5 12.36 0,00 23.73 0,00 247.31 −.274 558.08 −8.504 –– –– 

4 12.36 0,00 23.73 0,00 236.32 −7.572 –– –– –– –– 

3 12.35 −0.081 23.71 −0.084 –– –– –– –– –– –– 

2 12.38 −0.162 –– –– –– –– –– –– –– –– 



Marek MORAVIČ et al. / Acta Montanistica Slovaca, Volume 29 (2024), Number 4, 1058-1068 
 

1065 

  
Fig. 6. Mode shapes of the 1st natural frequency for six-mass. Fig. 7. Mode shapes of the 2nd natural frequency for six-mass. 

 
Tab. 4. Mode shapes of single-node oscillation of the mechanical system. 

1 = 12.35790 rad·s−1, =2
1 152.71767 rad2·s−2 

I 2
1I      2

1I     2
1I  k kI   2

1  

0.04279 6.53479 1 6.53479 6.53479 1604.020 0.00407 

0.05378 8.21316 0.99593 8.17970 14.71448 1060.240 0.01388 

0.00279 0.42608 0.98205 0.41843 15.13292 149.350 0.10133 

0.00048 0.07330 0.88072 0.06456 15.19748 16.674 0.91145 

0.05747 8.77668 −0.03073 −0.26967 14.92781 8.914 1.67465 

0.05734 8.75683 −1.70537 −14.93367 0 –– –– 

 
Tab. 5. Mode shapes of two-node oscillation of the mechanical system. 

2 = 23.73000 rad·s−1, 2
2 = 563.11290 rad2·s−2 

I 2
2I      2

2I     2
2I  k kI   2

2  

0.04279 24.09560 1 24.09560 24.09560 1604.020 0.01502 

0.05378 30.28421 0.98498 29.82928 53.92488 1060.240 0.05086 

0.00279 1.57108 0.93412 1.46758 55.39246 149.350 0.37089 

0.00048 0.27029 0.56323 0.15224 55.54470 16.674 3.33122 

0.05747 32.36210 −2.76799 −89.57794 −34.03325 8.914 −3.81795 

0.05734 32.28889 1.04997 33.90222 0 –– –– 

 

Values of monitored quantities given in Tab. 6 were calculated using the MATLAB simulation program.  

 
Tab. 6. Mode shapes of the six-mass mechanical system calculated in the MATLAB program. 

 0 1 2 3 4 5 

1 1 −01,000 −001,000 0000−1,000 000−1,000 −00001,0 

2 1 0.996 0.985 −0.744 −6.057 −13.31 

3 1 0.982 0.934 −0.915 64.544 327.204 

4 1 0.881 0.563 −1.015 246.776 −534.363 

5 1 −0.030 −2.77 0.004 −0.271 0.289 

6 1 −1.705 1.056 0 0 0 

 

A node represents a point around which two masses oscillate. At this point, the angle of rotation has zero 

value, and the moment has maximum value. 

The oscillating for the one-node (Fig. 6) mode shape of the six-mass system is between masses I4 and I5. In 

the two-node (Fig. 7) mode shape, it is between the pair of masses I4 – I5 and I5 – I6. In the above case, there are 

constant distances between the masses. It is different in the case of comparison of two-mode shapes with different 

numbers of masses (Fig. 8). The actual distance of the position of each mass involves converting the stiffness ki 

to the compliance ci and multiplying by an appropriate scale. 

Fig. 8 plots to scale the mode shape of the oscillation of the first natural angular frequency for the six-mass 

and the three-mass mechanical system. The position of the node of the six-mass and three-mass systems differs by 

0.6 %, which can be neglected. 

NODE 
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Fig. 8. Comparison of the one-node mode shape of the original and reduced mechanical system. 

 

Discussion and conclusions 

 

The calculation results show that the described method gives very good results not only for it is natural angular 

frequencies (Tab. 3) but also for it is mode shapes (Fig. 8), even when simplified to a two-mass system. It follows 

that the accuracy of the result using this method for technical practice is sufficient. Considering that the basic input 

data (moment of inertia and torsional stiffness) are also determined with a certain error, we can consider the 

accuracy of the result relevant.  

The accuracy of the calculations is influenced by:  

• error from the determination of input parameters, i.e., torsional stiffness of shafts and moments of inertia, 

• the method used to determine the natural angular frequencies and the mode shapes of oscillations. 

The proposed analytical method provides fast information already at the design stage of the mechanical 

system, unlike numerical virtual modelling methods where knowledge of the exact geometry is required to obtain 

relevant results. 

The knowledge of excitation and natural frequencies contributes to the partial elimination of vibrations in 

mechanical systems. 
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