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Abstract 

Landslides are a major natural hazard in Wayanad, Kerala, India, 

where steep terrain, intense monsoons, and human activities make the 

region highly vulnerable to landslides. Assessing the key factors 

influencing landslides is crucial for effective risk assessment and 

mitigation. This study employs geoinformatics, the Analytic 

Hierarchy Process (AHP), and spectral indices (NDVI, NDWI, BSI, 

NDMI) to analyze critical parameters, including slope, rainfall, 

elevation, rock type, and soil texture. By integrating remote sensing, 

GIS, and multi-criteria decision-making, the research determines the 

most influential factors contributing to landslides. The findings 

provide valuable insights for disaster preparedness, land-use 

planning, and risk reduction strategies in Wayanad. 
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Introduction  

 

Landslides are a significant geo-environmental risk in mountainous terrain globally, frequently initiated by 

synergistic natural processes and anthropogenic activities. The Western Ghats, a UNESCO World Heritage site 

and one of the eight "hottest hotspots" of biodiversity, are extremely vulnerable to such catastrophes, particularly 

during the monsoon period (Sajinkumar et al., 2021; Ajin et al., 2022). In Kerala's Wayanad district, landslides 

have become common as a result of its irregular landscape, high rainfall, weak rock structures, and growing land-

use changes. The July 30, 2024, landslide in Wayanad resulted in heavy damage to infrastructure, cropland, and 

natural habitats, highlighting the importance of conducting an in-depth analysis of its root causes (Rajaneesh et 

al., 2025; Sreenivas & Chauhan, 2025). 

Conventional practices for constructing landslide susceptibility maps often struggle to integrate the diverse, 

interconnected factors that govern slope instability. Multi-criteria decision-making procedures, however, such as 

the Analytical Hierarchy Process (AHP), have been instrumental in this role. AHP enables the organized 

combination of varying landslide conditioning elements through pairwise comparisons and the application of 

weights based on subjective expert judgment (Saaty, 1980). When combined with Geographic Information 

Systems (GIS), AHP provides a powerful method for creating reproducible and spatially explicit landslide 

susceptibility maps (Mondal & Maiti, 2013; Kumar & Anbalagan, 2016). 

This research combines the Analytical Hierarchy Process (AHP) with a set of remote sensing parameters and 

topographic factors to assess the major drivers that caused the 2024 Wayanad landslide. Of these, the Normalized 

Difference Vegetation Index (NDVI) is employed to analyze vegetation cover, as it plays an important role in 

ensuring slope stability. Healthy vegetation stabilizes the soil, decreases surface runoff, and reduces erosion, all 

of which are significant in forestalling the onset of landslides (Niraj et al., 2023; Pham et al., 2022). The 

Normalized Difference Moisture Index (NDMI) and Normalized Difference Water Index (NDWI) facilitate the 

identification of soil and plant moisture, as well as surface water, both of which are critical in inducing landslides 

under saturated conditions (Gao, 1996; McFeeters, 1996). The Bare Soil Index (BSI) determines areas of exposed 

soil that are susceptible to erosion and surface instability, thereby helping to determine areas prone to landslides 

(Polovina et al., 2024). 

Moreover, terrain parameters like the Compound Topographic Index (CTI), Stream Power Index (SPI), and 

Standard Curvature are integrated to evaluate the hydrological and geomorphological processes of the terrain (Dar 

et al., 2019; Singh et al., 2023). These factors have been found to efficiently represent areas of high water 

accumulation, flow divergence, and slope curvature, favorable conditions for slope failure (Florinsky, 2016; 

Pourghasemi et al., 2012). 

Through the integration of these indices and terrain characteristics through AHP in a GIS environment, this 

research seeks to assess the significance of landslide-influencing factors in Wayanad. The result not only elucidates 

the significance and spatial variation of certain landslide-causing factors but also serves as an essential decision-

making tool for land-use planning, disaster mitigation, and sustainable development in other susceptible hilly 

regions. 

 

Geographical location and geologic setting of the study area 

 

The study area for this research is the Wayanad district, located in the northeastern part of Kerala, India. 

Geologically, Wayanad is part of the Deccan Plateau and is characterized by Precambrian rocks of ancient age, 

primarily granite-gneiss. These underlying rock units are overlaid by lateritic soils due to the intense tropical 

weathering processes prevalent in the region. The region is further traversed by numerous fault lines and fractures, 

making it particularly susceptible to tectonic activity and slope failure, especially during the monsoon season (GSI, 

2020). 

The geomorphology of Wayanad is characterized by its hill landscape, which comprises steep slopes, deep 

valleys, and rough terrain. The elevation varies from about 700 meters to 2,100 meters above sea level, with 

Chembra Peak being the highest in the district (District Survey Report, Wayanad, 2017). The northern section of 

the district is made up of a generally flat plateau, which is quite distinct from the escarpments of the steep southern 

and eastern edges. There are several rivers, such as the Kabini and its tributaries, which cut through the landscape, 

contributing to the geomorphic diversity and landslide risk. 

The major land use and land cover (LULC) comprises agriculture. Plantation crops include tea, coffee, and 

pepper, while paddy is prevalent in valley bottoms (John et al., 2020). Although tropical evergreen and deciduous 

forests exist, especially within protected areas such as the Wayanad Wildlife Sanctuary, deforestation is becoming 

a growing concern. This is mainly fueled by increasing agricultural operations and increasing tourism-related 

development (Kerala Forest Department, 2018). Wayanad receives high annual rainfall, ranging from 2,500 mm 

to more than 4,000 mm, primarily due to the southwest monsoon. These heavy, short-duration rainfalls are one of 

the major initiators of landslides, especially in steep terrain areas with reduced vegetation cover (IMD, 2020). 
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Fig. 1. Study Area  

 

The district has a population of 817,420 according to the 2011 Census of India, with a density of 383 persons 

per square kilometer. The region is still rural-dominated, and the main source of livelihood is agriculture. The 

district is also inhabited by many tribal groups, and urbanization is restricted to the towns of Kalpetta, Sultan 

Bathery, and Mananthavady. 

The susceptibility of Wayanad to landslides was highlighted during the 2019 monsoon season, when villages 

such as Mundakkai, Chooralmala, Attamala, and Kunhome were extensively damaged. Chooralmala received 572 

mm of rain in the 48 hours preceding the landslides (Kerala State Disaster Management Authority, 2019), which 

led to the collapse of more than 236 structures and damage to over 400 others. The disaster killed at least 254 

people, making it one of the most devastating landslide tragedies in Kerala in recent times (Gopinath et al., 2024). 

Wayanad is a mountainous area with severe monsoons and fragile ecosystems. The Iruvazhinjhi River tends 

to swell during the monsoon, and the subsequent soil moisture, coupled with unstable slopes, exacerbates 

landslides. The landslide would most probably have occurred because of heavy rainfall, river erosion, and the 

slope's angle. Buffering the river aids in identifying areas vulnerable to landslides and in preparing steps to 

minimize their occurrence and effects. Consequently, a 1 km buffer area was established along the Iruvazhinjhi 

River to evaluate landslide-affected areas in Wayanad. It assists in identifying risk areas, identifying nearby 

communities and buildings, and evaluating factors such as erosion and slope failure. The buffer also assists in 

developing measures of protection, including reforestation and restricted construction, to avoid future destruction. 
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Data and Methodology 

Data 

The study utilized a combination of satellite imagery and open-source geospatial datasets to analyze the 

environmental and geographical characteristics of the study area. Landsat 9 OLI imagery (Scene ID: 

LC09_L2SP_145052_20240731_20240801_02_T2) was used to obtain high-resolution multispectral data for land 

surface analysis. The Digital Elevation Model (DEM) derived from the Shuttle Radar Topography Mission 

(SRTM) was employed to extract elevation and terrain-related parameters such as slope, which are crucial for 

geomorphological assessments. 

Additionally, thematic layers from various reliable sources were integrated into the study, as shown below: 
 

Tab. 1. Data Sources 

Thematic layer data Resolution Source 

LULC 10 m Sentinel 2 

RAI ~5.3 km CHIRPS yearly rainfall dataset 

Geomorphology 0.5 km Bhukosh 

Lineament 0.5 km Bhukosh 

Geology 0.5 km Bhukosh 

Drainage ~500 m Hydroshades 

Slope 30 m Open topography 

Soil 5 km Bhuvan 

Rainfall ~5.3 km CHIRPS daily rainfall dataset 

 

Methodology 

The study focused on the Wayanad landslide of July 30, 2024, beginning with the definition of the study area, 

identification of landslide events, and setting of objectives. Relevant satellite, DEM, geological, and rainfall data 

were collected from primary and secondary sources. Using the Analytical Hierarchy Process (AHP), landslide 

conditioning factors were weighted and analyzed. Geospatial preprocessing involved image correction, DEM and 

LULC processing, and generation of indices (NDVI, NDWI, NDMI, BSI, CTI, SPI, Standard Curvature). All data 

were integrated into GIS for analysis. Based on accurate results, findings were documented, influencing factors 

interpreted, and conclusions drawn. 

 

 
Fig. 2. Methodology Flowchart  

 

Analytic Hierarchy Process (AHP) 

 

The Analytic Hierarchy Process (AHP) is a decision-making technique that simplifies complex problems by 

breaking them down into more manageable components. It operates on three main principles: problem 

decomposition, comparative evaluation, and synthesis of relative priorities or rankings. In AHP, the problem is 

structured into a hierarchy of criteria, which are then evaluated through pairwise comparisons. These comparisons 

help determine the relative importance of each criterion. The rankings are calculated using the eigenvector method, 

and the consistency of the results is verified using the consistency ratio. Table 2 presents Saaty's scale for pairwise 

comparisons (Saaty, 1980). 
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Tab. 2. Saaty's scale of Analytic Hierarchy Process(AHP) 

Degree of Preference Definition Explanation 

1 Equally Important 
The two criteria hold equal significance or exert the same level of influence 

on the occurrence of landslides 

3 Moderately Important One factor has a greater impact or influence than the other 

5 Highly Important One factor has a significantly greater impact than the other 

7 Very Highly Important One factor significantly outweighs the other in influence 

9 Extremely Important 
One factor has the greatest potential to influence landslide occurrence 

compared to the other 

2,4,6,8 Intermediate Values 
When a trade-off between two factors is necessary, intermediate values may 
be applied 

 

The consistency of the relative importance weights assigned during the pairwise comparisons can be 

evaluated using the following equations (Eq. 1, Eq. 2) (Saaty, 1980).  

 

 Consistency Index (CI) = (max − n)  (n − 1)                                                                    (1) 

 

Where,  𝑚𝑎𝑥 represents the largest eigenvalue, and n denotes the size (order) of the matrix. 

 

Consistency Ratio (CR) = CI  RI                                                                                         (2) 

 

Where CI stands for the Consistency Index, whereas RI refers to the Random Index. 

 

The Random Index (RI) values, provided by Saaty, vary based on the value of n. These values are derived 

from extensive experiments conducted on a large dataset. Table 3 presents the RI corresponding to different values 

of n (Saaty, 1980). A Consistency Ratio (CR) of 0.1 (or 10%) or lower indicates that the pairwise comparison is 

consistent. If the CR exceeds 0.1, the results are deemed inconsistent, and the weights in the pairwise comparison 

matrix need to be revised. The weightage and CR of major causative factors and sub-factors are displayed in Tables 

4 and 5, respectively. 

 

Overlay Analysis 

 

Overlay analysis with conditional statements is an effective method in geospatial analysis that can combine 

several raster layers to derive useful spatial patterns. The technique assesses the pixel-wise combination of 

classified input layers based on certain logical conditions to produce a resultant new output layer. Conditional 

statements function as rules of decision, determining output values as a function of input layer class combinations. 

Using this method, intricate spatial relationships between different environmental or topographic parameters 

can be modeled systematically. This is particularly beneficial when dealing with multi-criteria data, as it allows 

the creation of composite indices or classifications that account for the combined impact of multiple factors. 

Conditional overlay operations were used in this research to combine various indices, such as spectral (e.g., NDVI, 

BSI, NDWI, NDMI) and topographic (for instance, CTI, SPI, Standard Curvature), to generate final output layers 

for various land surface or terrain classes. This rule-based approach provides a rational and uniform step for 

combining various geospatial data layers. Formulas for the indices from Table 6 were used to calculate them.  

 

Results and Discussion 

 

The results are categorized into two sections: 1. Analytic Hierarchy Process (AHP) and 2. Overlay analysis, 

which helped to investigate the factors causing landslides in Wayanad. AHP and overlay analysis are established 

GIS-based techniques that have been extensively studied and utilized in landslide susceptibility mapping for the 

last two decades. These methods are preferred for their simplicity and effectiveness in producing reliable predictive 

maps. 

 

1. Analytic Hierarchy Process 

 

In the present study, AHP has been applied using ten parameters associated with landslide susceptibility, 

namely, slope, rainfall, elevation, rock type, soil type, drainage length and curvature, geomorphological landforms, 

lineaments, and land use/land cover (LULC). 
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Tab. 3. Random Index (RI) Table 

Number of Criteria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.0 0.0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59 

 
 Tab. 4. Weightage & CR of  Major Causative Factors 

 
Tab. 5. Weightage & CR of  Major Causative  Sub-Factors 

Causative Sub-Factors  

 Low Moderate High Very High   Weightage CI CR 

Slope Low 1 0.500 0.333 0.200   0.085  

0.017 

 

0.019 

 
Moderate 2 1 0.500 0.250   0.140 

High 3 2 1 0.333   0.233 

Very High 5 4 3 1   0.542 

 

  Very Low Low Moderate High Very High Extremely High Weightage CI CR 

Elevation Very Low 1 0.500 0.333 0.250 0.200 0.167 0.043  

 

0.024 

 

 

0.019 
Low 2 1 0.500 0.333 0.250 0.200 0.065 

Moderate 3 2 1 0.500 0.333 0.250 0.102 

High 4 3 2 1 0.500 0.333 0.160 

Very High 5 4 3 2 1 0.500 0.249 

Extremely High 6 5 4 3 2 1 0.379 

 

 Bare land Built up Crop land Vegetation   Weightage CI CR 

LULC Bare land 1 2 3 4   0.466  

0.010 

 

0.011 Built up 0.500 1 2 3   0.277 

Crop land 0.333 0.500 1 2   0.161 

Vegetation 0.250 0.333 0.500 1   0.096 

 

The AHP analysis conducted in this research yielded Consistency Ratio (CR) values of less than 0.1 (or 10%), 

which means that the pairwise comparisons are consistent. Thus, the obtained weights are reliable, and the AHP 

results are acceptable for further analysis. 

To determine the integrated effect of the various surface and topographic characteristics concerning the 

occurrence of landslides, a multi-step overlay analysis was conducted based on four spectral indices: NDVI 

(Normalized Difference Vegetation Index), BSI (Bare Soil Index), NDWI (Normalized Difference Water Index), 

and NDMI (Normalized Difference Moisture Index). Each of these indices was first classified into two distinct 

classes based on appropriate threshold values that reflect vegetation cover, soil exposure, surface water presence, 

and moisture content, respectively. 

 
Tab. 6. Spectral and Topographical Indices 

Indices Acronyms Formula Source 

Normalized Difference Vegetation 

Index 

NDVI (NIR – Red) / (NIR + Red) Huete and Jackson (1987) 

Bare Soil Index BSI ((Red + SWIR) – (NIR + Blue)) / ((Red + SWIR) + 
(NIR + Blue)) 

Rikimaru and Miyatake (2002) 

Normalized Difference Water Index NDWI (Green – NIR) / (Green + NIR) Gao (1996) 

Normalized Difference Moisture Index NDMI (NIR – SWIR) / (NIR + SWIR) Gao (1996) 

Compound Topographic Index CTI ln(As / tanβ) Moore et al. (1993) 

Stream Power Index SPI ln(Astanβ) Wilson and Gallant (2000) 

Standard Curvature Curvature (profile curvature + planform curvature) / 2 Mitášová and Hofierka (1993) 

 

Note: ĸ represents the total topographic curvature (measured in mm⁻¹), while 𝛽 denotes the slope angle 

(expressed in degrees). 

 

2. Overlay Analysis 

 

The overlay analysis is performed in three parts. The first analysis is performed to quantify landslide-

influencing parameters based on spectral indices, while the second analysis is conducted based on topographic 

Causative 

Factors 

Slope Rainfall Elevation Rock 

Type 

Soil 

Texture 

Drainage Geomorphology Lineament LULC Weightage CI CR 

Slope 1 2 3 4 5 6 7 8 9 0.307  
 

 

 
0.051 

 

 
 

 

 
 

 

 
0.035 

Rainfall 0.500 1 2 3 4 5 6 7 8 0.218 

Elevation 0.333 0.500 1 2 3 4 5 6 7 0.154 

Rock Type 0.250 0.333 0.500 1 2 3 4 5 6 0.109 

Soil Texture 0.200 0.250 0.333 0.500 1 2 3 4 5 0.076 

Drainage 0.167 0.200 0.250 0.333 0.500 1 2 3 4 0.053 

Geomorphology 0.143 0.167 0.200 0.250 0.333 0.500 1 2 3 0.037 

Lineament 0.125 0.143 0.167 0.200 0.250 0.333 0.500 1 2 0.026 

LULC 0.111 0.125 0.143 0.167 0.200 0.250 0.333 0.500 1 0.019 
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indices. Finally, both spectral indices and topographic indices are spatially overlaid to determine the integrated 

effect of both on landslides.   

 

2.1. Overlay Analysis Using Spectral Indices 

 

The process begins with the classified NDVI (two classes, 10 and 20, where class 10 represents Low NDVI 

and class 20 represents High NDVI) and BSI (two classes, 1 and 2, where class 1 represents Low BSI and class 2 

represents High BSI) layers. This initial overlay combined vegetation and bare soil information and resulted in a 

new output raster with four unique class combinations. These combinations represent the interactions between 

vegetated and non-vegetated surfaces, as well as the extent of bare soil exposure. The condition used to perform 

this overlay is mentioned below. 

 

Con(("NDVI"==10)&("BSI"==1),1,Con(("NDVI"==10)&("BSI"==2),2,Con(("NDVI"==20)&("BSI"==1),

3,Con(("NDVI"==20)&("BSI"==2),4)))) 

 

Where class 1 indicates Low NDVI and Low BSI, class 2 indicates Low NDVI and High BSI, class 3 indicates 

High NDVI and Low BSI, and class 4 indicates High NDVI and High BSI, respectively. 

 

The next step involved overlaying the 4-class NDVI-BSI output with the classified NDWI layer (two classes, 

1 and 2, where class 1 represents Low NDWI and class 2 represents High NDWI). This overlay expanded the 

classification into eight possible combinations, capturing the joint characteristics of vegetation, soil exposure, and 

the presence of surface water. The condition used to perform this overlay is mentioned below. 

 

Con(("NDVI_BSI"==1)&("NDWI"==1),1,Con(("NDVI_BSI"==1)&("NDWI"==2),2,Con(("NDVI_BSI"=

=2)&("NDWI"==1),3,Con(("NDVI_BSI"==2)&("NDWI"==2),4,Con(("NDVI_BSI"==3)&("NDWI"==1),5,Con

(("NDVI_BSI"==3)&("NDWI"==2),6,Con(("NDVI_BSI"==4)&("NDWI"==1),7,Con(("NDVI_BSI"==4)&("N

DWI"==2),8)))))))) 

 

Where, class 1 indicates Low NDVI, Low BSI, and Low NDWI, class 2 indicates Low NDVI, Low BSI, and  

High NDWI, class 3 indicates Low NDVI, High BSI, and Low NDWI, class 4 indicates Low NDVI, High BSI, 

and High NDWI, class 5 indicates High NDVI, Low BSI, and Low NDWI, class 6 indicates High NDVI, Low 

BSI, and High NDWI, class 7 indicates High NDVI, High BSI, and Low NDWI and class 8 indicates High NDVI, 

High BSI, and High NDWI, respectively 

 

Finally, the 8-class output from the previous step was overlaid with the classified NDMI layer (two classes, 

1 and 2, where class 1 represents Low NDMI and class 2 represents High NDMI). NDMI, being an indicator of 

vegetation moisture, added another dimension to the analysis. The condition used to perform this overlay is 

mentioned below.  

 

Con(("NDVI_BSI_NDWI"==1)&("NDMI"==1),1,Con(("NDVI_BSI_NDWI"==1)&("NDMI"==2),2,Con((

"NDVI_BSI_NDWI"==2)&("NDMI"==1),3,Con(("NDVI_BSI_NDWI"==2)&("NDMI"==2),4,Con(("NDVI_B

SI_NDWI"==3)&("NDMI"==1),5,Con(("NDVI_BSI_NDWI"==3)&("NDMI"==2),6,Con(("NDVI_BSI_NDWI

"==4)&("NDMI"==1),7,Con(("NDVI_BSI_NDWI"==4)&("NDMI"==2),8,Con(("NDVI_BSI_NDWI"==5)&("

NDMI"==1),9,Con(("NDVI_BSI_NDWI"==5)&("NDMI"==2),10,Con(("NDVI_BSI_NDWI"==6)&("NDMI"=

=1),11,Con(("NDVI_BSI_NDWI"==6)&("NDMI"==2),12,Con(("NDVI_BSI_NDWI"==7)&("NDMI"==1),13,

Con(("NDVI_BSI_NDWI"==7)&("NDMI"==2),14,Con(("NDVI_BSI_NDWI"==8)&("NDMI"==1),15,Con(("N

DVI_BSI_NDWI"==8)&("NDMI"==2),16)))))))))))))))) 

 

Where, class 1 indicates Low NDVI, Low BSI, Low NDWI, and Low NDMI, 2 indicates Low NDVI, Low 

BSI, Low NDWI, and High NDMI, class 3 indicates Low NDVI, Low BSI, High NDWI, and Low NDMI, class 4 

indicates Low NDVI, Low BSI, High NDWI, and High NDMI, class 5 indicates Low NDVI, High BSI, Low 

NDWI, and Low NDMI, class 6 indicates Low NDVI, High BSI, Low NDWI, and High NDMI, class 7 indicates 

Low NDVI, High BSI, High NDWI, and Low NDMI, class 8 indicates Low NDVI, High BSI, High NDWI, and 

High NDMI, class 9 indicates High NDVI, Low BSI, Low NDWI, and Low NDMI, class 10 indicates High NDVI, 

Low BSI, Low NDWI, and High NDMI, class 11 indicates High NDVI, Low BSI, High NDWI, and Low NDMI, 

class 12 indicates High NDVI, Low BSI, High NDWI, and High NDMI, class 13 indicates High NDVI, High BSI, 

Low NDWI, and Low NDMI, class 14 indicates High NDVI, High BSI, Low NDWI, and High NDMI, class 15 

indicates High NDVI, High BSI, High NDWI, and Low NDMI and class 16 indicates High NDVI, High BSI, High 

NDWI, and High NDMI, respectively . 
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Although the theoretical outcome of this multi-layered overlay could yield sixteen unique classes, only fifteen 

were present in the study area due to the spatial distribution of the input variables. 

 

Throughout this process, the above-mentioned conditional statements were applied at each stage to 

systematically assign output classes based on the combination of class values from the input layers. This approach 

enabled a spatially integrative classification of the land surface, depicting the combined influence of vegetation 

health, soil condition, water availability, and moisture content. 

 

 
Fig. 3. Overlay Map of NDVI, BSI, NDWI, and NDMI  

 

2.2. Overlay Analysis Using Topographic Indices 

 

To evaluate the influence of topographic factors within the study area, a second overlay analysis was 

conducted using three terrain-based indices: the Compound Topographic Index (CTI), the Stream Power Index 

(SPI), and the Standard Curvature. Each of these indices was first processed and classified into two distinct classes. 

CTI was classified into two classes, such as low (class 10) and high topographic wetness (class 20). SPI was also 

classified into two stream power zones: low (class 1) and high (class 2), reflecting the potential erosive force of 

flowing water. Similarly, Standard Curvature was categorized into two classes, typically representing concave and 

convex slope features, which are essential in understanding water flow and slope behavior. 

Following the individual classification, the first overlay was carried out between the CTI and SPI layers using 

conditional statements. This operation produced four unique class combinations, each representing an interaction 

between the potential for wetness and erosive power. The condition used to perform this overlay is mentioned 

below. 

 

Con(("CTI"==10)&("SPI"==1),1,Con(("CTI"==10)&("SPI"==2),2,Con(("CTI"==20)&("SPI"==1),3,Con((

"CTI"==20)&("SPI"==2),4)))) 

 

Where class 1 indicates Low CTI and Low SPI, class 2 indicates Low CTI and High SPI, class 3 indicates 

High CTI and Low SPI, and class 4 indicates High CTI and High SPI, respectively. 
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The intermediate output from this overlay, consisting of four classes, was further overlaid with the classified 

Standard Curvature layer (two classes, 1 and 2, where class 1 represents Low Curvature and class 2 represents 

High Curvature). This additional overlay operation involved applying conditional logic to integrate the curvature 

information with the previously obtained combinations of CTI and SPI. The condition used to perform this overlay 

is mentioned below. As a result, the final output yielded eight distinct classes, each representing a unique 

combination of wetness, stream power, and slope curvature characteristics. 

 

Con(("CTI_SPI"==1)&("STANDARD_CURVATURE"==1),1,Con(("CTI_SPI"==1)&("STANDARD_CU

RVATURE"==2),2,Con(("CTI_SPI"==2)&("STANDARD_CURVATURE"==1),3,Con(("CTI_SPI"==2)&("ST

ANDARD_CURVATURE"==2),4,Con(("CTI_SPI"==3)&("STANDARD_CURVATURE"==1),5,Con(("CTI_S

PI"==3)&("STANDARD_CURVATURE"==2),6,Con(("CTI_SPI"==4)&("STANDARD_CURVATURE"==1),

7,Con(("CTI_SPI"==4)&("STANDARD_CURVATURE"==2),8)))))))) 

 

Where, class 1 indicates Low CTI, Low SPI, and Low Standard Curvature, class 2 indicates Low CTI, Low 

SPI, and High Standard Curvature, class 3 indicates Low CTI, High SPI, and Low Standard Curvature, class 4 

indicates Low CTI, High SPI, and High Standard Curvature, class 5 indicates High CTI, Low SPI, and Low 

Standard Curvature, class 6 indicates High CTI, Low SPI, and High Standard Curvature, class 7 indicates High 

CTI, High SPI, and Low Standard Curvature and class 8 indicates High CTI, High SPI, and High Standard 

Curvature, respectively. 

 

The overlay analysis of the terrain indices yielded a more detailed classification of the terrain, providing 

valuable insights into the topographic conditions that influence surface runoff, erosion susceptibility, and slope 

stability within the study area. 

 

 
Fig. 4. Overlay Map of CTI, SPI, and Standard Curvature 

 

As shown in Fig. 3, the landslide-affected area falls under Class 10, which is characterized by High NDVI, 

Low BSI, Low NDWI, and High NDMI. A high NDVI signifies abundant vegetation, implying that the area is 

likely covered with forests, grasslands, or well-grown crops. Low BSI indicates very little bare soil, suggesting 

minimal land degradation, deforestation, or exposed rock surfaces. Low NDWI indicates limited surface water, 
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suggesting that water bodies, such as rivers, lakes, or wetlands, are scarce or dry. High NDMI shows high soil and 

crop moisture, suggesting recent rainfall, high humidity, or strong water retention in the soil. These conditions 

indicate that the area has a landscape dominated by dense, healthy-grown crops with moist soil but minimal surface 

water and bare soil exposure.  

In Fig. 4, the landslide-affected area falls under Classes 2 and 4, which are characterized by Low CTI, Low 

and High SPI, and High Standard Curvature. Here, Low CTI suggests good drainage with minimal water 

accumulation, implying the area is less likely to have waterlogged soil and may be prone to rapid runoff. SPI 

values indicate varying erosion potential, where steeper areas experience stronger water flow and higher erosion, 

while gentler slopes have weaker water force. High Standard Curvature indicates the terrain has sharp ridges and 

deep valleys, which can influence water movement, soil stability, and erosion patterns. In brief, the results suggest 

that the area features well-drained, steep slopes, varying water flow intensities, and steep terrain characterized by 

pronounced ridges and valleys. 

 

2.3. Overlay Analysis Using Spectral and Topographic Indices 

 

To evaluate the combined influence of the spectral and topographic indices within the study area, an additional 

overlay analysis was conducted. In this analysis, class 10 from the spectral indices and classes 2 and 4 from the 

topographic parameters were selected to perform the conditional overlay. This approach enabled the assessment 

of the combined impact of both types of factors on the study area. The condition used to perform this overlay is 

mentioned below. 

 

Con(("NDVI_BSI_NDWI_NDMI"==10)&("CTI_SPI_STANDARD_CURVATURE"==2),1,Con(("NDVI_

BSI_NDWI_NDMI"==10)&("CTI_SPI_ STANDARD_CURVATURE"==4),2)) 

 

Where class 1 indicates High NDVI, Low BSI, Low NDWI, High NDMI, Low CTI, Low SPI, and High 

Standard Curvature, and class 2 indicates High NDVI, Low BSI, Low NDWI, High NDMI, Low CTI, High SPI, 

and High Standard Curvature. 

 

 
Fig. 5. Overlay Map of Spectral and Topographical Indices 
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Fig. 5 depicts that the landslide-affected areas (Chooralmala, Mundakkai) fall entirely within class 1. This 

suggests that the combination of these specific spectral and topographic conditions in Class 1, which is 

characterized by High NDVI, Low BSI, Low NDWI, High NDMI, Low CTI, Low SPI, and High Standard 

Curvature, has a stronger association with landslide occurrences in the region. These conditions reveal that the 

landslide-affected area has healthy crops or plants, with moist soil, but very little surface water or exposed bare 

soil. The land is steep and drains water well, with a low level of water flow and hilly terrain with sharp ridges and 

valleys. 

 

Conclusion 

 

The Wayanad region in Kerala state, India, experiences frequent landslides. Therefore, it becomes imperative 

to ascertain the influencing factors that could provide remedial strategies for alleviating the occurrence of 

landslides. Integrated analyses involving AHP and multiple spatial overlay analyses of the spectral and topographic 

indices revealed high NDVI, low BSI, low NDWI, and high NDMI, along with low CTI, moderate SPI, and high 

Standard Curvature as the vital factors triggering landslides in the study area. These conditions suggest that even 

regions with healthy vegetation cover (high NDVI) can be vulnerable to landslides when influenced by specific 

topographic and hydrological factors. The combined impact of moisture, soil exposure, and terrain curvature plays 

a critical role in slope instability. 

 

While the current approach has provided meaningful insights, incorporating temporal data and machine 

learning techniques may also enhance the predictive capability of the model. Therefore, this multi-criteria approach 

not only offers a conceptual assessment of landslide-vulnerable zones but also lays a strong foundation for more 

advanced risk assessment and planning efforts in the Wayanad region. 
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