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Abstract 

Accurately determining rock strength characteristics, such as uniaxial 

compressive strength (UCS), Brazilian tensile strength (BTS), and 

Los Angeles Abrasion (LAA), through conventional methods is both 

time-consuming and resource-intensive. To address this challenge, 

this study develops efficient artificial neural network (ANN) models 

optimized with Levenberg-Marquardt (LM), Bayesian 

Regularization (BR), and Scaled Conjugate Gradient (SCG) 

algorithms to predict UCS, BTS, and LAA from petrographic 

properties, advancing civil engineering applications. A total of 100 

dolerite samples were analyzed to assess their strength and 

petrographic characteristics, with the ANNs trained on the three 

aforementioned algorithms. The results indicate that the BR model 

achieved the highest accuracy, with a correlation coefficient (R) of 

0.9999 and a root mean square error (RMSE) of 0.3164. The LM 

model also demonstrated strong performance with an R-value of 

0.9997 and an RMSE of 0.8619. The BR and LM models 

significantly outperformed the SCG model, which had an R-value of 

0.9954 and an RMSE of 2.398. Sensitivity analysis identified 

plagioclase and chlorite as the most influential factors in predicting 

rock mechanical parameters. The effectiveness of the BR and LM 

techniques highlights their potential to offer substantial time and cost 

savings in rock strength prediction.  
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1. Introduction 

The mechanical properties of intact rocks are significantly influenced by their mineralogical and textural 

characteristics. Therefore, a thorough understanding of these attributes is essential for accurately assessing and 

predicting the mechanical behaviours of rocks. Various mineralogical and textural elements play crucial roles in 

shaping a rock's mechanical properties, including its mineral composition, density, hardness, size, shape, degree 

of interlocking, type of grain contacts, packing density, quantity, and the nature of cement and matrix. In the 

laboratory setting, these attributes can be efficiently and effectively evaluated through standard thin-section 

analyses, providing valuable insights into rocks' internal structure and composition (Khajevand and Fereidooni, 

2018).  

Assessing the mechanical qualities of the material (rock and soil) is essential before developing a specific 

engineering project (Hussain et al., 2023; Hussain et al., 2024). However, several tests are carried out in the 

laboratory to assess the strength and deformation properties of rock, such as the Brazilian tensile strength (BTS) 

test, the unconfined compression strength (UCS) test and the Los Angles abrasion test (LAA), which have been 

standardized by the American Society for Testing and Materials (ASTM) and the International Society for Rock 

Mechanics (ISRM). The unconfined axial compression is a laboratory test that directly measures the UCS, BTS, 

and LAA of rock samples. Nevertheless, certain obstacles exist to directly assessing the aforementioned rock 

properties in the laboratory. Obtaining sufficient high-quality core samples can be challenging, particularly in 

rocks that are extensively fractured, weak, and fragmented (Momeni et al., 2015; Stroisz et al., 2025). In addition, 

these direct technique tests include numerous disadvantages that are time-consuming and costly (Jahed Armaghani 

et al., 2016). 

The use of indirect tests, such as Petrographic characteristics, for their prediction is more advantageous and 

suitable since they are less expensive and simpler to carry out than the traditional UCS, BTS, and LAA test 

techniques, which need expensive equipment (Hussain et al., 2024). The majority of scholars attempted to use the 

ANNs technique to examine the strength parameters of rock indirectly due to the disadvantages of determining 

UCS directly. Through thin-section analysis, Saffet Yagiz investigated and evaluated the physicochemical 

properties of the rocks in the laboratory. To quantify important rock qualities and VP, he came up with several 

empirical equations, which he then used for the statistical analysis to confirm. He discovered a relationship 

between rocks' engineering (shear strength) properties and the composition of their surfaces and mineral particles. 

So, the best VP correlation coefficient between UCS and E was achieved, coming in at 0.94 (94% confidence 

level) and 0.91 (91% confidence level) (Yagiz, 2011). 

Furthermore, many researchers have examined the relationship between mineralogical and textural features 

and mechanical characteristics of different rocks (Hussain et al., 2025). They have discovered significant 

relationships between these parameters, highlighting the crucial role of these components in determining the 

mechanical behaviours of rocks. The researcher analyzed the petrographic characteristics and engineering 

geological parameters, such as modulus ratio, elastic constant ratio, triaxial compressive strength (TCS), and UCS, 

to categorize the carbonate hard ground (Dogan et al., 2006). The UCS and elastic modulus (E) of a fault breccia 

from the texture coefficient (TC) were predicted by using regression analysis, and they concluded that the UCS of 

the tested breccia is highly associated with TC (Alber and Kahraman, 2009). 

 Furthermore, the prediction of the UCS based on textural abilities was carried out through an artificial neural 

network and multivariate regression(Manouchehrian, Sharifzadeh and Moghadam, 2012). Moreover, previous 

researchers employed regression analyses to predict the engineering properties of limestone and marble samples 

based on microscopic data by regression analyses(Ozcelik, Bayram and Yasitli, 2013). The effects of texture and 

mineralogy were determined by using the ANN approach on the mechanical behaviour of marble samples (Bandini 

and Berry, 2013). Additionally, Kamani (Kamani and Ajalloeian, 2019) assessed the engineering characteristics 

of carbonate rocks using the adjusted texture coefficient and found that this metric can accurately evaluate and 

categorize the engineering characteristics of carbonate rocks in real-world scenarios. Researchers used image-

based textural quantification techniques to analyze crystalline igneous rocks and how their mineralogy and textural 

properties affect their strength (Hemmati et al., 2020). They stated that their developed indicator for quartz to 

feldspar size ratio was a highly effective texture measure. This parameter is strongly correlated with compressive 

and tensile strength across various rock types. 

 While previous research has focused extensively on predicting the mechanical properties of rocks, particularly 

Uniaxial Compressive Strength (UCS), by analyzing their mineralogical and textural characteristics, there remains 

a significant gap in comparative studies that assess the effectiveness of various predictive models for these 

properties. Most existing studies have relied on traditional empirical methods or individual algorithms without 

exploring or comparing multiple advanced models. Furthermore, few studies have integrated comprehensive 

petrographic attributes as input variables to simultaneously predict multiple mechanical strength parameters. This 

study addresses these gaps by examining 100 Dolerite rock samples to analyze their petrographic, textural, and 

mechanical properties. The research specifically aims to develop and compare three different Artificial Neural 

Network (ANN) models, BR, SCG, and LM, for predicting key mechanical strength parameters: UCS, Brazilian 
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Tensile Strength (BTS), and Los Angeles Abrasion (LAA). While ANN techniques have been used in some 

studies, the comparative analysis of these three models for predicting rock strength has not been fully explored in 

the existing literature (López, 2023). 

The novelty of this research lies in its approach to directly comparing the performance of BR, SCG, and LM 

models, incorporating a variety of petrographic attributes as inputs and assessing their accuracy in predicting UCS, 

BTS, and LAA. The optimal model selection is based on two critical statistical indicators: the correlation 

coefficient (R-value) and the mean square error (MSE). A Taylor diagram is used for a visual comparison of model 

performances. Additionally, a sensitivity analysis is conducted to evaluate the influence of each input variable on 

the mechanical strength parameters. By addressing the lack of comparative analysis in ANN-based predictive 

modelling for rock strength, this study comprehensively evaluates how different models perform with varied input 

data and mechanical outputs. This research fills the gap in the literature by offering a more nuanced understanding 

of model effectiveness, making it a valuable contribution to both geological research and engineering applications. 

2. Materials and Methods 

The present study involved fieldwork and laboratory analyses conducted in the Kirana Hills region to 

investigate the geotechnical and petrographic properties of Dolerite aggregates. 

Furthermore, Artificial Neural Networks (ANN) were employed to predict UCS, BTS, and LAA based on 

mineral composition and textural properties of Dolerites. The LM, BR, and SCG learning approach was utilized 

to train an ANN using a dataset of 100 detrital rock samples, as shown in Figure 1. The mineralogical composition 

of these rock samples also encompassed information about the composition through petrographic analyses. 

 

 
Fig. 1. Flow chart of the research work 
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2.1 Geological setting of the collected samples 

The Kirana-Malani Basin, also known as the Punjab Foreland Basin, originated in the Late Proterozoic era 

within the Northeast Gondwana region of Greater India (Khan et al., 2017). It is characterized by the prevalence 

of rhyolitic masses and some dolerite/basalt, andesite, and dacite outcrops, as shown in Figure 2. The Kirana Hills, 

situated near Sargodha, Chiniot, Shah Kot, and Sangla Hills, consist predominantly of Proterozoic rocks devoid 

of Phanerozoic lithologies(Hussain et al., 2022). The Kirana Hill rocks are considered the underlying basement 

for the sedimentary cover sequence, ranging from Paleozoic to Cambrian. These rocks in the Kirana Hills hold 

significant economic value as they are a crucial source of aggregates for constructing roads and civil structures in 

the Punjab province of Pakistan. 

 
Fig. 2. The Geological Map of Kirana Hills, Pakistan, shows the spatial distribution of various rock types and geological formations in the 

Kirana Hills region. The map includes detailed legends that differentiate rock bodies and samples based on their mineralogical and 

geological characteristics. Additionally, the map shows important geographic coordinates, town names, and the scale bar (1:100,000) for 
reference. Geological boundaries, such as those of the Buland Hills and the surrounding areas, are outlined, providing a comprehensive 

view of the area's geologic composition. 

2.2 Petrographic Analyses 

Petrographic investigations are performed to establish the depositional and chemical positions of the rock 

comprising the aggregate and its mineralogy. Petrographic assessments are often used to detect the reactive 

constituents in aggregates (Ugur, Demirdag and Yavuz, 2010). The comprehensive petrographic investigation aims 

to determine the influence of probable depositional environments and diagenetic fabric on the engineering qualities 

of the understudied rocks. The mineral content was determined via a model analysis approach. The proportion of 

minerals was calculated using Equation 1. 

 

                              𝐶𝑚 =  ( 𝑇𝑚/ 𝑇𝑡𝑚) ∗ 100     (1) 

 

Where Cm is the % of mineral composition, Tm is the Total number of counts for a mineral, and Ttm is the 

Total number of counts for the entire mineral. 

2.3 Geotechnical Analyses 

The research conducted an in-depth assessment of the characteristics of mechanical strength. The rock strength 

parameters examination included UCS, BTS, and LAA tests. 
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2.3 Geotechnical Analyses 

2.3.1 Unconfined Compressive Strength (UCS) 

UCS enumerates the maximum axial stress that rock can endure before fracturing. Rock strength is often 

evaluated by laboratory testing to determine its ability to withstand stress, enabling the identification of a suitable 

rock for a certain purpose(Deere and Miller, 1966). The UCS was calculated according to the (C170-17, 2017) by 

using equation 2. 

 

𝜎𝑐  = 𝐹/𝐴                                     (2) 

 

In which σc is the uniaxial compressive strength (MPa), F is the maximum failure load (in N), and A is the 

cross-sectional area (mm2). 

2.3.2 Brazilian Tensile Strength (BTS) 

In natural conditions, rock masses are typically subjected to compression rather than tension directly. However, 

tension can occur indirectly through the transfer of compression. Conducting direct tensile strength tests on rocks 

is challenging and often expensive for routine applications(Woodland et al., 2023). As an alternative, the Brazilian 

disk test is commonly used to define rock samples' tensile strength. This test maintains the thickness-to-diameter 

ratio at 1:2. The BTS test was calculated using equation 3.  

 

𝜎𝑡  = 2𝑃/𝜋 𝑑 𝑡                                   (3) 

 

In which σt is the tensile strength (MPa), 𝑃 is the failure load (N), 𝑑 is the diameter of the specimen (mm), and 

𝑡 is the thickness of the specimen (mm). 

2.3.3 Los Angles Abrasion (LAA) 

The LAA test was conducted according to ASTM C131/C131M (2014) guidelines (ASTM, 2008). For each 

LAA test, 5000 ± 10 g of the graded aggregate sample and 12 steel spheres were employed in the Los Angeles 

machine cylinder. The cylinder was rotated 500 times, and the Percentage of fines passing through the 1.70 mm 

sieve was measured. Equation 4 was used to calculate the LAA %. 

 

𝐿𝐴𝐴𝑙𝑜𝑠𝑠𝑒𝑠 (%)  = 𝐴 − 𝐵/(1) ∗ 𝐴 ∗ 100     (4) 

 

where 𝐴 is the original mass of samples(g), and 𝐵 is the final mass of samples retained on the number 12 sieve 

in grams. 

2.4 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) have recently been utilized in various geotechnical models. Numerous 

studies suggest that machine-learning approaches are more efficient and effective than traditional methods (Pianosi 

et al., 2016). Neural networks acquire knowledge by processing the provided instances rather than relying on pre-

established mathematical relationships between variables (Borgonovo and Plischke, 2016). Neural networks are 

often trained by processing large input and output patterns to achieve pattern recognition and prediction. The 

technique involves establishing a connection between input and output data. Consequently, it has remarkable 

interpolation abilities, particularly when the input data is contaminated by noise. Neural networks may replace 

statistical analysis approaches such as auto-correlation, multivariable regression, linear regression, trigonometric 

functions, etc. Three fundamental components could define a particular network: transfer function, network 

architecture, and learning legislation(Khan et al., 2021). The choice of these components will fluctuate depending 

on the problem to be resolved. Figure 3 shows the general framework of the ANN. 
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Fig. 3. General Architecture of ANN 

 

2.4.1 Dataset 

In this study, three artificial neural network (ANN) algorithms, Bayesian Regularization (BR), Scaled 

Conjugate Gradient (SCG), and Levenberg-Marquardt (LM), were selected to predict key mechanical strength 

parameters (UCS, BTS, and LAA) based on petrographic data. These algorithms were chosen for their distinct 

characteristics and suitability to the problem at hand. The Levenberg-Marquardt (LM) algorithm was selected due 

to its fast convergence properties and high accuracy in solving non-linear problems, particularly when dealing with 

relatively small datasets, which is a common scenario in geotechnical engineering studies. It has proven highly 

effective in similar applications where complex relationships must be captured efficiently. The Bayesian 

Regularization (BR) algorithm was chosen for its ability to mitigate overfitting and its robustness in handling noisy 

data, making it particularly valuable when the dataset is limited or contains variability, as is often the case in rock 

strength prediction. BR enhances model generalization, ensuring reliable predictions even with complex input-

output relationships. The Scaled Conjugate Gradient (SCG) algorithm, although less computationally efficient, 

was included for comparative analysis. SCG has been successfully applied in geotechnical modelling and was 

assessed to provide a baseline for evaluating the performance of LM and BR. By utilizing these three algorithms, 

we aimed to explore their respective strengths and limitations in rock strength prediction, thereby contributing to 

a comprehensive evaluation of ANN-based models in geotechnical applications. The architecture of the neural 

network is based on a dataset obtained from petrographic and geotechnical analyses. This dataset is split into two 

parts: input data and target data. The input data comprises the features fed into the neural network, while the target 

data represents the expected outcomes for each corresponding input. The dataset is fundamental in shaping the 

network's design, influencing factors such as the number and types of layers, as well as defining its parameters 

(Khan et al., 2022). The network consists of three distinct phases: training, validation, and testing. Table 1 displays 

the data division for the model's training, validation, and testing.  

 
Tab. 1. Data Splitting for model, testing, training, and validation 

Levenberg-Marquardt Algorithm(LM) 

Phase Percentage (%) No of Specimens 

Training 70 70 

Validation 15 15 

Testing 15 15 

Total 100 100 

Bayesian Regularization (BR) 

Training 75 75 

Validation  - -  

Testing 25 25 

Total 100 100 

Scaled Conjugate Gradient (SCG) 
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Training 70 70 

Validation 15 15 

Testing 15 15 

Total 100 100 

 

This research used a neural network model with 10 input parameters and three output parameters to predict the 

strength characteristics of materials and evaluate knowledge regarding rock types. The input parameters 

correspond to the following rock types: sphalerite, hydromica, chlorite, quartz, calcite, hydromica, epidote, 

amphibole, and feldspar, as seen in Figure 4. The neural network processes this information by assigning numerical 

codes to categorize each kind of rock. The output parameters give precedence to crucial mechanical strength 

properties, including UCS, BTS, and LAA. These qualities are determined using laboratory experiments following 

the prescribed methodologies established by the International Society for Rock Mechanics (ISRM) (Culshaw, 

2015).  

 
Fig. 4. Architecture of Input and Output 

2.4.2 Statistical Analysis between Variables 

The heatmap in Figure 6 was utilized to calculate the correlation coefficients among various parameters. The 

analysis reveals intricate relationships between these parameters, offering insight into how mineralogical factors 

influence the mechanical properties of rocks. The heatmap visualizes the strength and direction of correlations 

between variables, with values ranging from -1 to 1, where values closer to 1 indicate a strong positive correlation, 

values closer to -1 indicate a strong negative correlation, and values near 0 suggest weak or no correlation. From 

the heatmap, it is particularly noteworthy that Calcite (Calc) shows a strong positive correlation with several 

mechanical strength parameters, including UCS, BTS, and LAA, with Pearson correlation values of 0.3172, -

0.4030, and 0.2501, respectively, as shown in Figure 5. This suggests that Calcite has a considerable impact on 

the rock's mechanical properties, particularly in relation to its compressive strength (UCS) and abrasion resistance 

(LAA). Additionally, Micrite (Mic) and Spherite (Sph) also exhibit positive correlations with UCS, BTS, and 

LAA, further emphasizing the significant role of these mineralogical components in affecting the mechanical 

strength of the rock. Notably, Plagioclase (Pl) and Chlorite (Chl) show weaker correlations with the mechanical 

properties, as indicated by their relatively lower Pearson correlation values. This suggests that while they play a 

role in influencing rock strength, their impact is not as pronounced as that of Calcite, Micrite, and Spherite. 

The results from the heatmap suggest a compelling relationship between the composition of these minerals and 

the mechanical properties being studied. The strong correlations observed between certain minerals (e.g., Calcite 

and UCS, BTS, and LAA) underscore the complexity and depth of the underlying geological dynamics that 

influence rock behaviour. These findings provide valuable insights into how mineral composition impacts the 

mechanical strength of rocks, which is crucial for geotechnical applications such as material selection and 

engineering design. 
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Fig. 5. Heatmap of the correlation coefficients between variables 

3. Results and Discussion 

3.1 Petrographic Analyses of Dolerites 

The rocks of the Kirana hills have a fine to medium-grained texture categorized by hypidioblastic and sub-

blastoporphyritic attributes. The plagioclase minerals present in the rocks range from andesine to labradorite. The 

plagioclase concentration varies between 20.4% and 30.5%, as shown in Figure 6. Amphibole is a secondary 

mineral found in rocks that plays a crucial role in their composition. It mainly arises as subidioblastic crystals 

(Petrounias et al., 2018). The amphibole content varies between 0.5% and 10.8%. Chlorite is an essential mineral 

found in rocks, with a composition ranging from 20.7% to 52.5%. Pyribole undergoes alteration, resulting in the 

formation of a secondary mineral. Calcite can be found in rocks either as discrete grains or as aggregates. The 

production of this substance is mostly attributable to the modification of plagioclase. The calcite content varies 

between 4.5% and 19.2%. Quartz is categorized as an accessory mineral that is primarily discovered in the form 

of anhedral crystals. The composition varies between 2.2% and 4.5%. 

Magnetite is a subordinate mineral that occurs as a crystal with an irregular shape. The composition ranges 

from 5.1% to 6.9%. The transformation of feldspar produces Hydromica and makes up approximately 2.0% to 

2.5% of the rocks. Although it is a mineral that reacts, its quantity remains within a safe range. Orthoclase, a kind 

of K-feldspar, is classified as an accessory mineral. The substance transforms sericite and varies in composition 

from 3.1% to 4.5%. Epidotes are irregularly shaped crystals, and their composition ranges from 0.4% to 9.2%. 

Sphene is a widely distributed accessory mineral with a composition that varies from 0.5% to 2.0%. The quartz 

content in the dolerites ranges from 2.2% to 4.5%. These rocks are free from Alkali-Silica Reaction (ASR) 

Potential and can be used as aggregates in cement concrete that uses high alkali cement. The rock's hydrophilic 

mineral content, ranging from 2.2% to 4.5%, is within acceptable limits, making it appropriate for bitumen 

concrete. The sum of the detrimental substances in minerals varies from 2.0% to 2.5%, indicating that dolerites 

are safe and do not show any potential for Alkali-Silica Reaction (ASR). 
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Fig. 6. Petrographic Analyses of Dolerites, Kirana Hills, Pakistan 

3.2 Geotechnical Analyses 

In the current research, each rock sample was subjected to the UCS test using prepared cores with a length-to-

diameter ratio of 2:3. Figure 8 illustrates the average UCS values acquired for the rocks. The lowest recorded UCS 

value was 76.30 MPa, while the highest was 96.50 MPa. 

In this research, experiments were performed on each Dolerite rock sample to ascertain its tensile strength. An 

absolute maximum of 9.1 MPa was measured for the BTS, with 6.1 MPa representing the minimum. The range of 

tensile strengths demonstrated by the Dolerite samples is denoted by these values, where a lower value corresponds 

to a reduced resistance to tension, and a higher value signifies an enhanced tensile strength (Naeem et al., 2019). 

Aggregate strength and durability are assessed utilizing fundamental parameters, including LAA, Aggregate 

impact value (AIV), and aggregate crushing value (ACV) (Hussain et al., 2022). The Los Angeles abrasion values 

recorded in this research ranged from 9% to 15 %, as illustrated in Figure 7. 

 

 
Fig 7. Geotechnical Analyses of Dolerites, Kirana Hills, Pakistan 
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3.3 ANN Approach 

3.3.1 Levenberg–Marquardt (LM) 

LM technique was used to estimate the mechanical properties of dolerites. The robustness and durability of 

these geological materials can be operated using fundamental metrics such as UCS, BTS, and LAA. The designed 

framework used in this research relies on organized data sets to predict the parameters. Figure 8 shows the training, 

validation, and testing model error histogram. The graph is inconsistent, as the bars converge on the red line in the 

centre. Moreover, RMSE was calculated by comparing the predicted and target values, as shown in Figure 9. 

RMSE data enhances and quantifies the adaptability and efficacy of the LM model compared to other evaluated 

models or approaches. The RMSE values shown in Figure 9 (a,b,c) vary from 0.8866 for UCS, 0.3023 for BTS, 

and 1.037 for LAA estimated outcomes. These data represent the difference between the expected and actual UCS, 

BTS, and LAA values. The findings indicate that the LM model is suitable for predicting the results of the UCS, 

BTS, and LAA. 

 
.Fig. 8. Error histogram of LM algorithm model. 

 

In addition, the precision values for each outcome range from 96% to 97%, which is a measurement of the 

model's prediction accuracy. This demonstrates that the LM model achieves high accuracy, as it constantly and 

accurately aligns its predictions with the experimental or target values. 

  

Fig. 9. Graphs displaying the MSE of (a) UCS, (b) BTS, and (c) LAA based on LM analysis. 

 

Furthermore, Figure 11(a,b,c) displays the anticipated UCS, BTS, and LAA values associated with each data 

point in the dataset. This figure presents a thorough examination of the experimental results. The graphical 
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depiction demonstrates the high level of accuracy achieved by the LM model, with little absolute discrepancies in 

its predictions. The visual assessment in Figure 10 demonstrates the impressive ability of the LM model to 

accurately estimate UCS, BTS, and LAA measures, as seen by its alignment with the experimental data. This 

demonstrates the model's accuracy and competence in predicting these variables over the entire dataset. 

 

 
Fig. 10. Variation between measured and predicted values of (a)UCS, (b)BTS, and (c)LAA based on LM 

 

Regression graphs have been generated to enhance the assertion of accuracy in demonstrating the relationship 

between the target or experimental data and the estimated values produced by the LM algorithm, as seen in Figure 

11. Regression plots are crucial tools for visualization that comprehensively assess the level of consistency 

between the predicted values and the actual experimental data across several factors(Shah et al., 2022).. 

Moreover, the correlations between the values of the mechanical characteristics predicted by LM and those 

seen in the experiment are displayed in Figure 11 (a). The lines obtained are well-fitted, and it is clear that the 

anticipated values of UCS, BTS, and LAA are, for the most part, close to the values obtained through the 

experiment. The R2 value was recorded as 0.9994 between the experimental and estimated values of the mechanical 

strength of rocks. In conclusion, there are strong connections between the values of the predicted mechanical 

characteristics and those observed in the experiment. 

In the residuals graph, most residuals cluster closely around the zero line, demonstrating a well-fitted model 

that, on average, precisely forecasts the mechanical strength based on petrographic parameters, as shown in Figure 

11 (a). Generally, the high R2 value of 0.9994 and the comprehensible pattern in the residual support the model's 

vigour and efficiency in describing the association between petrographic parameters and mechanical strength, as 

shown in Figure 11 (b). 

 

Fig. 11. The graphs showing the (a) Relationship between experimental and estimated values of the rock mechanical properties and (b) 

residual graph based on LM 
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The visual depictions of regression for several subsets of the data used for training, testing, and validation 

emphasize the model's ability to forecast accurately. The high regression value (R) of 0.9997 demonstrates a 

significant correlation between predicted and experimental results over the dataset, highlighting the model's 

reliable performance. The training set has a high regression value of 0.99998, demonstrating that the model fits 

the known data well. In the testing set, the regression value is slightly lower at 0.99893 but still substantial, 

signifying the model's ability to simplify fit to unknown data. Furthermore, the regression value of 0.99837 from 

the validation set proves the model's consistency and reliability. The plots exhibit high alignment between the 

points and the regression lines, indicating a strong relationship between the predicted and experimental values, 

confirming the model's efficacy. The separate regression plots for each outcome (UCS, BTS, and LLA) are shown 

in Figure 12(a,b,c,d). 

 
Fig. 12. The prediction results of UCS, BTS, and LAA based on the LM model 

3.3.2 Bayesian regularization (BR) 

The BR technique is used to train the model similarly to LM. Although the LM approach is faster, it often 

requires additional memory. BR may be more time-consuming but provide excellent generalization results for 

difficult, minor, or multifaceted datasets. The training terminates due to the use of adaptive weight reduction, also 

known as regularization.  

The error histogram indicates that to mitigate overfitting, the model first exhibits a high MSE and then reduces 

its dependence on the training parameters. The graph illustrates that the model needs many epochs because of 

the little longer time required by BR. Figure 13 displays the model error histogram between training and testing. 

Based on the findings of this performance criteria, the model accurately forecasts the mechanical strength 

properties of the UCS, BTS, and LAA. 

Fig. 13. The error histogram based on the BR algorithm model. 
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Furthermore, the RMSE was determined by comparing the projected values with the experimental values, as 

seen in Figure 14. The use of RMSE data enhances and quantifies the adaptability and efficacy of the LM model 

in comparison to other evaluated models or techniques. The RMSE values were recorded as 0.632 for UCS, as 

shown in Figure 14 (a), 0.2877 for BTS, as shown in Figure 14(b), and 0.4342 for the LAA, as shown in Figure 

14 (c) predicted outcomes. The error level for UCS, BTS, and LAA between the predicted and actual values as 

shown by the values provided. These findings indicated that the BR model has high accuracy in forecasting the 

outcomes of the LAA, BTS, and UCS. 

 

Fig. 14. Root Mean Square Error (RMSE) of (A)UCS, (B)BTS, and (C)LAA based on BR 

 

The performance of the BR technique was evaluated by comparing experimental data with predictions made 

using ANN. The blue line on the y-axis shows the mechanical strength parameters' experimental values, whereas 

the red line represents projected values. Figure 15(a) exhibits the lines are nearly overlapped, indicating a high 

level of accuracy; however, in Figures 15(b) and 15 (c) for BTS and LAA, slight variations are observed, 

suggesting less accuracy compared to UCS. The graphical representation tremendously displays the exceptional 

accurateness obtained by the Baseline model, showcasing minimal absolute disparities in its predictions. 

 

 
Fig. 15. Graph showing the variation between measured and predicted values of (a)UCS, (b)BTS, and (c)LAA based on BR 
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Moreover, Figures 16(a) and (b) display the correlations between the values of the mechanical characteristics 

predicted by BR and those seen in the experiment. The lines obtained are well-fitted, and the anticipated values of 

UCS, BTS, and LAA are, for the most part, equivalent to the values obtained through experimentation. In 

conclusion, there are strong connections between the values of the predicted mechanical characteristics and those 

observed in the experiment. 

In addition, the residuals graph shows that most residuals cluster around the zero line, indicating a well-fitted 

model that accurately predicts mechanical strength from petrographic characteristics, as shown in Figure 16 (b). 

The model's high regression R2 values of 0.9999 and the presence of a distinct residual pattern provide strong 

evidence for the model's validity and efficacy in defining petrographic features and mechanical strength. This 

model exhibits higher accuracy and value compared to the LM model, making it more reliable than the ML model. 

 
Fig. 16. (a)Relationship between experimental and estimated values of the rock mechanical properties and (b) Residuals graph based on BR 

Subsequently, a regression analysis was conducted using the same methodology as the one employed for the 

LM model. Figure 17 (a,b,c) displays the training and testing correlations between the input and output variables 

of the model, providing an overview of the overall correlation. In each case, a linear fit with blue, green, and 

red colours is presented. The R-value of 0.99987 suggests that the model trained with Bayesian regularization 

accurately predicts the UCS, BTS, and LAA output. 

Fig. 17. Regression analysis of BR between experimental and predicted mechanical strength of rock: (a) Training; (b) Testing; (c) Overall 

Dataset 
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3.3.3 Scaled Conjugate Gradient (SCG) 

The SCGB algorithm is employed to train the model. Figure 18 displays the histogram of model errors for 

training, validation, and testing. The graph illustrates the lack of convergence of the error bar bins towards the 

zero-error line. These findings indicate that the model exhibits much higher error values ranging from -8.768 to 

7.924 compared to the LM and BR algorithms; it performs badly in predicting the mechanical strengths of rock. 

Fig. 18. The error histogram based on SCG 

The RMSE values were recorded, which vary from 3.323 for UCS, as shown in Figure 19(a), 0.8912 for BTS, 

as shown in Figure 19(b), and 1.2432 for LAA, as shown in Figure 19 (c). These figures represent the degree of 

inaccuracy between the projected and actual values for UCS, BTS, and LAA. The results demonstrate that the 

SCG model is unsuitable for accurately forecasting the outcomes of the UCS, BTS, and LAA due to its high level 

of inaccuracy as compared to the LM and BR models. 

 

 
 

Fig. 19. Root Mean Square Error (RMSE) of (A)UCS, (B)BTS and (C)LAA based on SCG 

 

Furthermore, a comprehensive analysis of the experimental and predicted findings of UCS, BTS, and LAA 

associated with each data point included in the SCG algorithm dataset was conducted, as presented in Figure 20. 

The graphical representation displays the accuracy obtained by the SCG model, showcasing maximum absolute 

disparities in its predictions. Through the visual examination in Figure 20 (a,b,c), the formidable capability of the 

SCG model to forecast UCS, BTS, and LAA metrics aligned with the experimental data is not reliable. These 

findings concluded that the SCG model is not well suited for predicting mechanical strength when compared to 

the LM and BR models 
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Fig. 20. Graph showing the variation between measured and predicted values of (a)UCS, (b)BTS, and (c)LAA based on SCG 

 

The correlations between the values of the mechanical characteristics predicted by SCG and those seen in the 

experiment are presented in Figure 21. The results demonstrated that the predicted values of UCS, BTS, and LAA, 

for the most part, have illustrated more variability than the experimental values, as shown in Figure 21(a). The 

lines that were produced are not well-fitted. As a result, it can be stated that there are insufficient connections 

between the values of the predicted mechanical properties and those seen in the experiment, and the model has a 

minimal level of accuracy. 

Moreover, the residuals graph demonstrates that most residual clusters are not located around the zero line, 

suggesting that the model is inappropriate and unsuitable for reliably predicting mechanical strength from 

petrographic features, as shown in Figure 21(b). In comparison to the LM and BR models, the SCG model has 

inadequate reliability, suggesting that it has far lower precision. 

 
Fig. 21. (a)Correlations between experimental and predicted values of the rock mechanical properties (b) Residual graphs based on SCG 

algorithm 
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In addition, regression analyses were performed to illustrate the association between the input and output 

values of the model for training, validation, and testing. Figure 22(a,b,c) depicts the model's overall accuracy or 

relationship. Each instance displays a linear fit in a variety of colors. The R-value of 0.9972 reveals a poor or 

average model for predicting the mechanical strength of rock. The relationship between the variables is not linear. 

The regression analysis model demonstrates that the SCG algorithm is not well suited for predicting the mechanical 

strength of the rock when compared to the LM and BR models. 

Fig. 22. Regression analysis of SCG algorithm between experimental and predicted mechanical strength of rock: (a) Training; (b) 

Validation; (c) Testing; (d) Overall dataset. 

3.4 Taylor Diagrams    

The Taylor diagrams are utilized (Khosravi et al., 2021) to examine the training and testing outcomes of three 

models, as depicted in Fig. 23. Taylor diagrams integrate the correlation coefficient, RMSE, and standard deviation 

into a single polar diagram based on their cosine relationship. In addition, the reference point accurately represents 

the UCS, BTS, and LAA, whereas points closer to the referenced show lower-centered RMSE values and higher 

model capabilities. During the training and testing stages, BR demonstrates superior performance compared to 

LM, while SCG performs the least effectively, as shown in Figure 23.  

         

 
Fig. 23. The Taylor diagrams of the UCS, BTS, and LAA based on LM, BR, and SCG 
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3.5 Comparison of BR, LM, and SCG Models 

In the assessment of three different approaches using both experimental data and ANN predictions, the 

performance of the models was carefully evaluated. Figure 24 (a) associates the experimentally observed values 

of UCS with those estimated by the different algorithms. Remarkably, the predictions from the BR and LM 

algorithms demonstrate high accuracy, with their lines nearly flawlessly overlapping. In contrast, the predictions 

resulting from the SCG algorithm show more noticeable deviations, demonstrating less precision in predicting 

UCS. The BTS assessment, shown in Figure 24 (b), reveals that both the BR and LM models consistently 

outperform the SCG algorithm in predictive accuracy. The graphical representation further emphasizes the strong 

performance of BR and LM, highlighting the significant discrepancies observed in the SCG model's predictions. 

Similarly, the predictions for LAA, as shown in Figure 24 (c), indicate a higher accuracy for the BR model, 

followed closely by the LM model, while the SCG algorithm again demonstrates comparatively poorer 

performance. This comparative analysis underscores the BR model's superior accuracy across various parameters 

when compared to the LM and SCG models. 

Beyond the accuracy of predictions, computational efficiency plays a crucial role in the selection of the most 

suitable model for practical applications. The BR algorithm, while demonstrating exceptional accuracy, tends to 

require longer processing times and more memory usage due to its complex network structure and iterative 

optimization process. The LM algorithm, on the other hand, achieves similar predictive accuracy as the BR model 

but with significantly faster processing times and lower memory requirements, making it more suitable for time-

sensitive applications and scenarios with limited computational resources. 

In contrast, the SCG algorithm, although computationally more efficient in terms of processing time, lags in 

terms of accuracy. The computational speed of SCG may make it an attractive choice for applications where speed 

is more critical than high precision. However, in practical applications where predictive accuracy is paramount, 

such as in geotechnical engineering or geological exploration, the BR and LM models are more appropriate despite 

their higher computational cost. Therefore, the choice of algorithm should be guided not only by the desired 

accuracy but also by the available computational resources and the specific needs of the application, balancing 

between accuracy, processing time, and memory usage. 

 
Fig. 24. Comparison of mechanical strength parameters vs predicted values of (a) LM, (b)BR, and (c)SCG 

3.6 Sensitivity Analyses 

Sensitivity analysis evaluates how individual input variables influence the output variables, providing insight 

into the impact of each mineral component on the rock's mechanical strength. The results highlight that the 

influence of input variables on the output parameters increases with higher sensitivity levels. Previous studies, 

such as those by Shang et al., have shown that certain input variables significantly affect the prediction of output 

variables (Ji et al., 2017). 

In this research, a sensitivity analysis was conducted to assess the influence of individual mineral components, 

Plagioclase, chlorite, calcite, quartz, magnetite, Hydromica, K-feldspar, epidote, amphibole, and spherite on the 

rock's UCS, BTS, and LAA. The analysis results, shown in Figure 25, indicate that Plagioclase and chlorite are 

the most influential variables affecting the mechanical strength of the rock. This aligns with findings from (Pan et 
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al., 2016), who emphasized that Plagioclase and chlorite are crucial for the compressive strength of rocks. 

However, while Plagioclase and chlorite are the primary contributors to the rock's mechanical properties, the 

analysis also revealed that other minerals, such as calcite, quartz, magnetite, Hydromica, K-feldspar, epidote, 

amphibole, and spherite, have a more limited impact. Notably, minerals like quartz, spherite, and Hydromica were 

identified as the least significant contributors to the variability of UCS, BTS, and LAA, with sensitivity scores of 

0.0483, 0.0484, and 0.0474, respectively. 

This insight into the relative significance of various minerals suggests that while minerals such as Plagioclase 

and chlorite should be prioritized in predicting rock strength, the influence of minerals with lower significance 

(such as quartz and Hydromica) may be negligible in the context of the mechanical strength parameters studied. 

These findings underscore the importance of focusing on key mineralogical factors when developing predictive 

models for rock mechanical properties. 

 

 
Fig. 25. Variable importance of input parameters to mechanical strength parameters (US, BTS, LAA) 

3.7 Model Validation 

Twenty rock samples were prepared into standard specimens and tested for mineralogical, UCS, UCS, BTS, 

and LAA to ensure the BR Model's applicability. The developed BR model employed petrographic parameters as 

input and produced mechanical strength as output. The R2 and MSE were calculated using the BR model, as seen 

in Figure 26(a,b,c,d). In addition, the anticipated and observed values of UCS, BTS, and LAA are compared. When 

the developed BR model is used for the new datasets from the validation data, it obtains an R2 of 0.99 and an MSE 

ranging from -3.60 to 3.88, as seen in Figure 26(a,b,c,e). The measured ratios of UCS, BTS, and LAA to the 

anticipated values are greater than the actual values. The findings acquired demonstrate the significant technical 

applicability of the proposed approach. The model suggested in this research can accurately estimate the UCS, 

BTS, and LAA of rock samples to an adequate level. 
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Fig. 26. The predicted results of 20 validation datasets 

4 Conclusion 

This research conducted 100 laboratory tests on rock samples from the Kirana Hills to develop an advanced 

predictive model for important rock strength parameters, namely UCS, BTS, and LAA. The study underscores the 

crucial role of artificial neural networks (ANNs) as a powerful tool for accurate predictions, particularly when 

traditional empirical correlations fall short. Mineralogical data was utilized as the input for constructing the 

predictive model, with rock strength characteristics serving as the output. Through this approach, the research 

successfully established predictive models using the LM, BR, and SCG algorithms. 

The performance of the three algorithms was rigorously evaluated, with the LM, BR, and SCG methods 

achieving accuracy rates of 99%, 98%, and 95%, respectively. The corresponding root mean square error (RMSE) 

values for these models were 0.8619, 0.3164, and 2.398, indicating the varying levels of their effectiveness. The 

SCG algorithm, however, proved to be the least effective, showing poor correlation and high RMSE values 

compared to the other models, which made it unsuitable for accurately predicting the mechanical strength of rocks. 

In contrast, the BR model outperformed both the LM and SCG models, achieving an outstanding R-value of 

99.99% and the lowest RMSE of 0.3164. While the LM model achieved a very similar R-value of 99.97%, it was 

significantly faster in terms of processing time compared to the BR algorithm. These results demonstrate that both 

the LM and BR algorithms are highly effective models for predicting the mechanical strength parameters of rocks, 

including UCS, BTS, and LAA. Sensitivity analysis further identified Plagioclase and Chlorite as the primary 

variables influencing the mechanical strength of rocks, while other variables had a comparatively lesser impact on 

the predictions. This highlights the importance of focusing on key mineralogical components to improve model 

accuracy. 
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In conclusion, the LM and BR algorithms demonstrated exceptional accuracy, offering a dual advantage of 

both time and cost efficiency in estimating the mechanical properties of rocks. These models represent a significant 

advancement in geological and engineering investigations, providing a reliable, cost-effective tool for rock 

property analysis. Their integration into geological studies can streamline decision-making processes, enabling 

more informed choices in the exploration, mining, and engineering sectors. However, the research also suggests 

that future studies should expand the model's scope by including a broader range of rock types and incorporating 

a larger dataset, which will likely improve the overall performance and robustness of the predictive models. 

Additionally, extending the model to include other important rock properties, such as Young's modulus, would 

further enhance its applicability and utility, making it even more valuable for comprehensive geological and 

engineering analyses. 
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