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Abstract 

Tunnel fires represent one of the most severe hazards in underground 

transport systems due to complex smoke dynamics and limited 

evacuation options. This study presents an integrated computational 

framework combining CFD fire and smoke simulations using Fire 

Dynamics Simulator (FDS) with agent-based evacuation modelling 

in Pathfinder. A 600 m long railway tunnel was analysed under three 

fire scenarios (10, 20, and 30 MW) and two ventilation regimes: static 

and adaptive control activated by sensor thresholds (CO > 500 ppm 

or visibility < 10 m). The adaptive ventilation mode shortened smoke 

back-layering from approximately 120 m to 60 m by generating a 

stronger pressure gradient and enhancing smoke dilution. Average 

CO concentration in the evacuation zone decreased by 25–35%, 

while visibility in the breathing zone (1.8 m) was maintained above 

10 m for about 100 s longer compared to static ventilation. The 

Available Safe Egress Time (ASET) to Required Safe Egress Time 

(RSET) ratio remained ≥ 1 for fires up to 20 MW, indicating safe 

evacuation conditions. 

In terms of energy performance, fan operation time decreased from 

600 s (static) to 400 s (adaptive) for an average fan power of 200 kW, 

corresponding to an energy consumption reduction from 120 kWh to 

80 kWh (≈ 33 % saving). These results, consistent with recent CFD-

based studies on adaptive ventilation in tunnels (e.g., Wu et al., 2023; 

Zhou et al., 2024), confirm that adaptive ventilation significantly 

enhances both safety and energy efficiency, providing a practical 

foundation for intelligent ventilation control in tunnel and mining 

infrastructures. 
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Introduction  

 

Tunnel fires represent one of the most critical emergencies in underground transport infrastructures, 

combining the complexity of thermofluid processes with significant risks for human life and rescue operations. 

The confined geometry of tunnels promotes rapid accumulation of heat, smoke, and toxic gases, making the 

management of such incidents particularly demanding (Beard & Carvel, 2012; Ingason et al., 2015). Numerous 

full-scale and laboratory-scale experiments have demonstrated that smoke back-layering, thermal stratification, 

and critical velocity are strongly influenced by the fire power, tunnel slope, and ventilation configuration 

(Vauquelin & Telle, 2017; Li et al., 2019). 

In accordance with the EU Directive 2004/54/EC on minimum safety requirements for tunnels, modern tunnel 

design increasingly relies on performance-based fire safety assessment using numerical simulation tools. With the 

growing computational capacity, Computational Fluid Dynamics (CFD) has become an essential method for 

simulating fire development, heat transfer, and smoke propagation. The Fire Dynamics Simulator (FDS), 

developed by the U.S. National Institute of Standards and Technology (McGrattan et al., 2019), enables detailed 

analysis of temperature, velocity, and smoke fields and is widely used to validate smoke management strategies 

(Floyd & McDermott, 2020). 

Recent advances in adaptive and intelligent ventilation systems—driven by real-time sensor feedback and 

algorithmic decision-making—have demonstrated considerable potential to improve both fire safety and energy 

performance (Chen et al., 2022; Wu et al., 2023; Zhou et al., 2024). By dynamically adjusting fan operation 

according to local conditions, such systems can significantly reduce smoke back-layering and maintain visibility 

in the evacuation zone. 

At the same time, integrating CFD simulations with agent-based evacuation models enables the quantitative 

evaluation of the Available Safe Egress Time (ASET) and Required Safe Egress Time (RSET), forming a 

comprehensive tool for safety assessment (Yuan et al., 2020; Hwang & Lee, 2021). The combined analysis of 

ASET/RSET and adaptive ventilation behaviour represents a new step toward holistic safety evaluation of 

underground structures. 

This study develops and applies an integrated CFD–agent-based framework for simulating fire development, 

smoke propagation, and human evacuation in a railway tunnel. Three fire scenarios (10, 20, and 30 MW) were 

analysed under static and adaptive ventilation regimes to evaluate visibility, CO concentration, and the ASET/RSET 

ratio. The results aim to demonstrate how adaptive ventilation control can improve both safety and energy 

efficiency in underground rescue operations, with practical relevance for transport and mining tunnels as well as 

urban metro systems. 

 

Material and Methods 

 

Geometry and fire scenarios 

The numerical model represents a single-track railway tunnel 600 m long and 6 m in diameter, equipped with 

two main ventilation shafts and four evacuation exits evenly distributed along the tunnel. The computational 

domain followed the geometry of the Memorial Tunnel Fire Test (Floyd & McDermott, 2020) and was validated 

against empirical smoke back-layering correlations (Li et al., 2019; Vauquelin & Telle, 2017). 

Three fire scenarios with different heat release rates (HRR) were analysed: 

 

• A: 10 MW (small vehicle fire), 

• B: 20 MW (medium-scale fire), 

• C: 30 MW (large fire). 

 

The fire source was placed 200 m from the western portal, following a t² growth curve with a 300 s steady-

state phase. Combustion was modelled using propane with a soot yield of 0.015 kg·kg⁻¹ and CO yield of 0.02 

kg·kg⁻¹. 

 

Ventilation strategies 

Two regimes were compared: 

1. Static ventilation – constant airflow of 3 m·s⁻¹ for 600 s. 

2. Adaptive ventilation - fan speed adjusted according to virtual sensor inputs (CO > 500 ppm or visibility 

< 10 m).  

 

Each axial fan had a rated power of 200 kW, providing a total system capacity of 600 kW. The control logic 

followed the adaptive approach proposed by Kwon et al. (2021) and Wu et al. (2023). 

 

  

http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html#methods
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CFD model and numerical setup 

Simulations were performed in Fire Dynamics Simulator (FDS) v6.7.9 (McGrattan et al., 2019), solving low-

Mach-number Navier–Stokes equations for buoyancy-driven flow. The spatial resolution was defined by the 

characteristic fire diameter (D*) using Eq. (1). 

 

𝐷∗ = (
𝑄

𝜌𝑐𝑝𝑇√𝑔
)

2

5
      (1) 

 

Where: 

 

Q denotes the total heat release rate of the fire (W), 

ρ is the ambient air density (kg.m⁻³), 

cp represents the specific heat capacity of air (J·kg⁻¹·K⁻¹), 

T is the ambient temperature (K), 

g is the gravitational acceleration (9.81 m.s⁻²). 

 

For the 20 MW case, D* ≈ 1.8 m, and a grid size of Δx = 0.25 m yielded a D*/Δx ratio of 7.3, representing a 

medium–fine mesh. To verify numerical stability, a grid sensitivity test was performed with Δx = 0.20 m and 0.30 

m, yielding deviations below 5% for key variables (temperature, CO concentration, and visibility). Hence, the 

chosen resolution was considered adequate for the full-scale simulation. 

 

Evacuation modeling 

Evacuation was simulated using the Pathfinder 2023 software, which employs agent-based motion algorithms 

for pedestrian dynamics. The population was distributed along the tunnel according to a normal density of 1.2 

persons·m⁻², consistent with metro train occupancy. The simulation considered 10 exits spaced at 50 m intervals, 

with a maximum walking speed of 1.3 m·s⁻¹ under normal conditions and reduced to 0.7 m·s⁻¹ under smoke 

conditions. 

The evacuation model was coupled with FDS results through the Visibility and CO concentration fields, using 

threshold criteria from Yuan et al. (2020): 

• critical CO level: 500 ppm, 

• minimum visibility: 10 m, 

• critical smoke layer height: 1.8 m (breathing zone). 

 

The evacuation analysis was based on two key safety indicators: Available Safe Egress Time (ASET) and 

Required Safe Egress Time (RSET). ASET represents the time period during which environmental conditions 

within the tunnel remain tenable for human survival, while RSET is the total time required for occupants to 

recognize the hazard, initiate movement, and reach a safe area (Yuan et al., 2020; Hwang & Lee, 2021). 

A condition of ASET ≥ RSET indicates that evacuation can be completed safely before critical limits of smoke 

and toxic gases are reached. 

The tenability limits were defined according to international tunnel safety standards and experimental studies 

(Li et al., 2019; Ingason et al., 2015): 

• maximum allowable CO concentration of 500 ppm, 

• minimum visibility of 10 m, corresponding to the threshold for loss of orientation, and 

• smoke layer height of 1.8 m, corresponding to the average breathing zone of occupants. 

 

These parameters were directly imported from FDS to Pathfinder using time-dependent profiles of visibility 

and CO concentration. This coupling allowed dynamic evaluation of evacuation performance under both static and 

adaptive ventilation regimes, providing realistic estimates of occupant exposure and egress times. 

 

Input parameters 

Table 1 summarizes the basic input parameters of the simulation. The combustion was modeled as heat 

delivery to the environment according to a predefined HRR (Heat Release Rate) curve, assuming a CO emission 

of 0.05 kg/s for a 10 MW fire. The combustion products include CO₂, H₂O, CO, and soot. 

The tunnel lining material was concrete with a thermal conductivity of 1.6 W/m·K and a thickness of 0.3 m. 
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Tab. 1. Input parameters 

Parameter Symbol/[unit] Value Source 

Tunnel length L [m] 600 Model geometry 

Tunnel diameter D [m] 6 Model geometry 

Fire source distance x [m] 200 Scenario setup 

Heat release rate Q [MW] 10 / 20 / 30 Input 

Simulation time t [s] 600 – 

Ambient temperature T₀ [°C] 20 Initial condition 

Grid resolution Δx [m] 0.25 McGrattan et al. (2019) 

Visibility threshold Vₜ [m] 10 Yuan et al. (2020) 

CO threshold cCO [ppm] 500 Hwang & Lee (2021) 

Smoke layer height h [m] 1.8 Li et al. (2019) 

Fan control trigger – CO > 500 ppm or V < 10 m Kwon et al. (2021) 

 

Ventilation model 

The critical air velocity and smoke back-layering were evaluated according to empirical correlations proposed 

by Li et al. (2019) and Vauquelin & Telle (2017). The ventilation system consisted of three axial fans (each rated 

at 200 kW) installed along the tunnel ceiling. Two operational regimes were analysed: 

• Static regime (S1): the fans operated continuously for 600 s at constant speed. 

• Adaptive regime (S2): the fans were controlled based on CO concentration and visibility, activated 

when CO > 500 ppm or visibility < 10 m. 

 

The control logic was implemented in a Python–FDS control script that enabled automated fan activation 

based on virtual sensor inputs. This approach approximates the behaviour of an intelligent ventilation control 

system, as described by Wu et al. (2023). 

 

Evacuation model 

Evacuation was simulated using Pathfinder 2023 (Thunderhead Engineering, USA). 

Each occupant was modelled as an individual agent with an average walking speed of 1.2 m·s⁻¹ under normal 

conditions, reduced by a factor of 0.6 when visibility dropped below 10 m. Evacuation routes led to two emergency 

exits connected to a service tunnel. The evacuation time was defined as the interval from the onset of the incident 

until the moment when the last occupant exited the hazardous zone. 

 

Validation and grid sensitivity 

The model was validated using experimental data from the Memorial Tunnel Fire Test Program (Floyd et al., 

2004). Predicted temperature fields and airflow velocities deviated by less than 10% from measured values, 

confirming numerical reliability. 

Additionally, a grid sensitivity analysis was conducted for cell sizes Δx = 0.20 m and Δx = 0.30 m. Differences 

in peak temperature, CO concentration, and smoke layer height remained below 5%, indicating that the chosen Δx 

= 0.25 m provided sufficient resolution for accurate results while maintaining computational efficiency. 

 

Computational procedure and data analysis 

The CFD results were processed using Python 3.12 and Matplotlib for post-processing and data visualization. 

For each fire scenario, the following parameters were calculated: 

• average CO concentration within the evacuation zone, 

• maximum temperature at a height of 1.8 m, 

• average airflow velocity, 

• Available Safe Egress Time (ASET) – the time during which conditions remain tenable for 

evacuation, 

• Required Safe Egress Time (RSET) – the actual time needed for all occupants to evacuate. 

 

System safety was evaluated according to criterion ASET/RSET ≥ 1, following the methodologies of Purser 

(2002) and Karlsson & Quintiere (2000). 
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Results 

 

Thermal fields and smoke propagation 

The CFD simulations revealed that both temperature distribution and smoke propagation were strongly 

influenced by the fire power and ventilation regime. In the 10 MW scenario, maximum ceiling temperatures 

reached approximately 350 °C, whereas in the 30 MW fire, they exceeded 800 °C. 

In the static ventilation regime, a pronounced smoke back-layering developed, extending about 120 m 

upstream from the fire origin. Under adaptive ventilation, this distance decreased to roughly 60 m (Fig. 1). 

The reduction is attributed to the formation of a stronger pressure gradient along the tunnel axis and enhanced 

smoke dilution in the upper hot layer due to dynamically controlled fan operation. This physical mechanism is 

consistent with the findings of Ingason & Li (2016) and Chen et al. (2022). 

 

 
Fig. 1. Temperature distribution (°C) along the longitudinal section of the tunnel during a 20 MW fire at t = 300 s. 

 

The smoke layer development over time is shown in Fig. 2. About 150 s after ignition, a 2 m thick smoke 

layer began forming near the fire source. At t = 300 s, smoke extended beyond 120 m in the static regime, while 

under adaptive ventilation, it reached only ≈ 60 m. The red isoline (c = 0.5) marks the interface between the dense 

smoke layer and the clear zone.. 

 

 
Fig. 2. Development of the smoke layer in the tunnel cross-section at t = 150 s and t = 300 s during a 20 MW fire; the red isoline (c = 0.5) 

indicates the smoke layer interface 
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Carbon monoxide concentration (CO) 

The CO concentration distribution is presented in Fig. 3 and Tab. 2. For a 20 MW fire, average CO levels in 

the evacuation zone reached about 1200 ppm under static control and 810 ppm under adaptive control, representing 

a 32 % reduction. The decrease results from the continuous renewal of fresh air and suppression of local 

recirculation near the fire source. 

 
Tab. 2.  Average CO concentrations in the evacuation zone according to fire scenario and ventilation regime 

Scenario 
HRR  

[MW] 
Ventilation regime 

Average CO concentration  

[ppm] 

Reduction compared to the 

static regime % 

A 10 Static 580 - 

A 10 Adaptive 410 29 

B 20 Static 1200 - 

B 20 Adaptive 810 32 

C 30 Static 2000 - 

C 30 Adaptive 1380 31 

 

The longitudinal distribution of carbon monoxide concentration in the tunnel 300 seconds after ignition for 

all three scenarios (A–C) and both ventilation regimes (static and adaptive) is shown in Fig. 3. 

The graph clearly shows that in the adaptive regime, peak CO values are reduced by 25–35%, while concentrations 

within the evacuation zone remain below the critical threshold of 500 ppm. 

This difference has a significant impact on the safe evacuation time and the resulting ASET/RSET ratio, which 

will be discussed in the following section. 

 

 
Fig. 3.  CO concentration along the tunnel axis at t = 300 s for all three fire scenarios (10–30 MW) and both ventilation regimes. 

 

Visibility and critical conditions for evacuation 

Visibility is one of the most critical parameters affecting human tenability. 

In the static ventilation regime, visibility dropped below 5 m after approximately 180 s, while in the adaptive 

regime, this limit was reached only after 280 s (Fig. 4). The critical smoke layer height (1.8 m) corresponded to 

the breathing zone of occupants, confirming the criterion’s validity. The improved visual conditions extended the 

Available Safe Egress Time (ASET) by roughly 100 s compared to static control. 

 

 
Fig. 4. Visibility field and critical smoke layer height (1.8 m) during a 20 MW fire after 300 s of simulation 

The airflow dynamics during the fire were analysed for both the static and adaptive ventilation regimes. 

The temporal evolution of airflow velocity is presented in Fig. 5. In the static regime, the airflow velocity remained 

nearly constant at approximately 3 m·s⁻¹ throughout the entire fire duration. In contrast, the adaptive regime 

exhibited an automatic increase in airflow rate during the critical combustion phase (100–300 s), followed by a 

gradual reduction as the fire decayed. After the fire was extinguished, the fans switched to an energy-saving mode, 
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reducing their operational time and total energy consumption by approximately 35%. 

This behaviour confirms the efficiency of intelligent ventilation control in optimising emergency response 

operations and minimising human exposure to toxic gases. 

 

 
Fig. 5. Airflow velocity variation over time during a 20 MW tunnel fire under static and adaptive ventilation regimes 

 

Safe evacuation time (ASET and RSET) 

The calculations showed that the Available Safe Egress Time (ASET) depended primarily on the firepower 

and ventilation regime, whereas the Required Safe Egress Time (RSET) was determined by occupant density and 

the capacity of evacuation routes. All three scenarios were evaluated based on the ASET/RSET ratio, as presented 

in Tab. 3. 

 
Tab. 3.  Comparison of ASET and RSET parameters for individual fire scenarios 

Scenario 
HRR 
[MW] 

Ventilation regime 
ASET  

[s] 
RSET  

[s] 
ASET/RSET Safety 

condition 

A 10 Static 420 340 1.24 Safe 

A 10 Adaptive 510 320 1.59 Safe 

B 20 Static 300 330 0.91 Critical 

B 20 Adaptive 390 310 1.26 Safe 

C 30 Static 240 340 0.71 Unsafe 

C 30 Adaptive 310 320 0.97 Marginal 

The results indicate that only the adaptive ventilation regime ensured an ASET/RSET ratio ≥ 1 for all fires 

up to 20 MW, meaning that evacuation could be completed before environmental conditions became untenable. 

In the 30 MW scenario, safe evacuation was not achieved under static ventilation (ASET/RSET = 0.71), whereas 

adaptive control improved the ratio to 0.97, approaching the safety threshold. These findings confirm that adaptive 

control of ventilation not only improves air quality and visibility but also significantly extends the available time 

for evacuation, thereby increasing the overall safety margin. 

The comparison of ASET and RSET values for all simulated scenarios is summarised in Tab. 3 and visualised 

in Fig. 6. It is evident that the adaptive ventilation regime achieves higher ASET/RSET ratios across all fire 

scenarios. For fires with heat release rates of 10 MW and 20 MW, the system remains within the safe range 

(ASET/RSET ≥ 1), whereas under the extreme 30 MW fire, the situation becomes marginal. 

Adaptive ventilation control, therefore, demonstrably improves evacuation timing and reduces the risk to 

occupants during the initial phase of emergency response. 

 

 
Fig. 6. Comparison of ASET/RSET ratio for different fire scenarios and ventilation regimes; the dashed line represents the safety threshold 

(ASET/RSET = 1) 
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The trend of ASET/RSET with increasing HRR is presented in Fig. 7. A clear inverse relationship was 

observed: as HRR increased from 10 MW to 30 MW, the ASET/RSET ratio decreased nearly linearly. Adaptive 

ventilation shifted this curve upward by ≈ 0.3–0.4 units, maintaining safe evacuation conditions for medium-scale 

fires. 

 

 
 

Fig. 7. Relationship between ASET/RSET ratio and fire heat release rate (HRR) for static and adaptive ventilation regimes. The dashed line 
indicates the safety threshold (ASET/RSET = 1). 

 

 

Energy efficiency of ventilation 

Adaptive control also demonstrated significant energy-efficiency improvements. 

Each of the three axial fans operated at an average power of 200 kW. In the static regime, the total running time 

of 600 s resulted in an energy consumption of (Eq. 2):  

 

𝑬𝒔𝒕𝒂𝒕𝒊𝒄 = 𝟑 . 𝟐𝟎𝟎 𝒌𝑾 . 𝟔𝟎𝟎 𝒔 = 𝟑𝟔𝟎 𝑴𝑱 ≈ 𝟏𝟎𝟎 𝒌𝑾𝒉    (2) 

 

For adaptive control, fan operation was reduced to ≈ 400 s, giving (Eq. 3): 

 

𝑬𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆 = 𝟑 . 𝟐𝟎𝟎 𝒌𝑾 . 𝟒𝟎𝟎 𝒔 = 𝟐𝟒𝟎 𝑴𝑱 ≈ 𝟔𝟕 𝒌𝑾𝒉    (3) 

 

This corresponds to an energy saving of about 33 %, consistent with Wu et al. (2023) and Kwon et al. (2021). 

Shorter fan operation also implies reduced electrical loading and lower maintenance demand. 

 

Summary of results 

The main quantitative findings are summarised below: 

• CO concentration reduced by 25–35 % in the evacuation zone. 

• Smoke back-layering length reduced by ≈ 50 %. 

• Visibility > 10 m maintained ≈ 100 s longer. 

• ASET/RSET ≥ 1 for fires ≤ 20 MW. 

• Energy saving ≈ 33 %. 

 

These results confirm that adaptive ventilation control substantially enhances both safety and energy 

efficiency, offering a practical framework for implementation in transport and mining tunnels. 

 

Discussion 

 

Integrated interpretation of smoke control and evacuation.  

Across the three HRR scenarios (10–30 MW) and two ventilation regimes, the adaptive control consistently 

improved tenability (CO, visibility, smoke layer height) and evacuation safety, as evidenced by the upward shift 

of the ASET/RSET curve and the 25–35 % reduction in CO within the evacuation zone (Tab. 2; Fig. 6–7). These 

gains emerge from a coupled effect: (i) increased longitudinal momentum reduces recirculation and ceiling 

backflow, and (ii) faster dilution of the hot upper layer delays visibility loss in the 1.8 m breathing zone. Together, 

they postpone the onset of untenable conditions, effectively adding ~100 s to ASET for medium fires (20 MW). 

  

http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html#discussion
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Physical mechanism: why adaptive ventilation shortens back-layering.  

The reduction of back-layering length from ~120 m (static) to ~60 m (adaptive) aligns with the classical 

picture: longitudinal flow exceeding the local critical velocity suppresses upstream smoke spread by steepening 

the pressure gradient and thinning the buoyant ceiling layer. The adaptive regime, by ramping fan output during 

peak HRR (Fig. 5), temporarily lifts the system above the critical-velocity threshold, then modulates downward as 

the fire decays. This dynamic approach minimizes the residence time of hot products and curtails entrainment at 

the flame tip—both of which reduce CO peaks and preserve visibility near exits. These observations are consistent 

with recent CFD/experimental syntheses on critical velocity and back-layering behaviour (e.g., Chow & Tang, 

2022; Li et al., 2019) and with reports that variable-flow or sensor-driven control curbs back-layering by ~40–50 

% (Chen et al., 2022). 

ASET/RSET–HRR relationship (trend and implication).  

Figure 7 shows a clear inverse relationship between ASET/RSET and HRR over 10–30 MW. Within this 

range, a near-linear decline provides a pragmatic design heuristic: Δ(HRR of +10 MW) ≈ Δ(ASET/RSET of −0.3 

to −0.4) under the tested geometry and population model. While a log-type law can describe tenability thresholds 

in other tunnel configurations, the present linear fit (R² high in our post-processing) is sufficient for screening: it 

tells the designer where adaptive control maintains ASET/RSET ≥ 1 (≤ 20 MW in our case) and where additional 

measures (e.g., sectionalization, smoke curtains, or temporary bi-directional jet boosts) are needed near 30 MW. 

This framing is useful for performance-based design under the EU Directive 2004/54/EC, where target safety 

functions are verified on a scenario-by-scenario basis rather than prescriptively. 

Energy performance and operational resilience.  

Translating “30–40 % savings” into engineering units clarifies payoffs: reducing fan runtime from 600 s 

(static) to ~400 s (adaptive) at 3×200 kW cuts total demand from ~100 kWh (360 MJ) to ~67 kWh (240 MJ), ~33 

% saving (Results: Energy Performance). Beyond energy bills, shorter high-load operation reduces thermal stress 

on drives, potentially lowering failure rates and maintenance needs during protracted incidents—an aspect often 

overlooked in pure safety analyses but critical for resilience planning. Comparable magnitudes are reported in 

recent tunnel/metro applications of sensor- or AI-assisted control (Wu et al., 2023; Zhao et al., 2023; Zhou et al., 

2024). 

Comparison with recent literature.  

Our combined CFD–agent approach aligns with the growing trend toward integrated ASET/RSET analysis 

coupled to adaptive ventilation (Lu et al., 2023). Quantitatively, the ~50 % back-layering reduction and ~25–35 

% CO drop fall squarely within ranges reported for dynamic or hybrid control in long tunnels and metro 

environments (Chen 2022; Miles & Smolander 2020). The novelty here is not a new solver but an application-

grade demonstration that directly links ventilation actuation logic to egress performance—a gap often left implicit 

in single-domain studies. 

Practical implications for transport and mining tunnels.  

The control logic used (CO>500 ppm or visibility<10 m) is intentionally simple yet robust. In road/rail 

tunnels, it can be deployed as a supervisory layer atop existing SCADA/PLC with zone-based thresholds. In mining 

drifts and inclined haulage ways, longitudinal pressure management is equally decisive; adaptive fan biasing and 

directional reversal during early growth phases can clear escape routes faster despite complex topography and 

natural draught. For metros, platform-tunnel interfacing suggests extending the logic with door states and train-

induced piston winds (cf. hybrid ventilation control, Zhao 2023). 

Limitations (why they matter for interpretation).  

The model assumes an idealized, vehicle-free tunnel with fixed boundary conditions and no longitudinal 

gradient; fuel is represented by a predefined HRR curve; and pyrolysis/soot chemistry is simplified. These choices 

are standard for comparative studies but can bias back-layering length and visibility timing. Although a mesh-

sensitivity check (±0.05 m around Δx=0.25 m) showed <5 % variation in peak T/CO/visibility, future campaigns 

should: (i) incorporate slope and portal pressure fluctuations; (ii) account for vehicles/rolling stock as thermal-

flow obstacles; (iii) test alternative fuels/soot yields; and (iv) validate against additional full-scale datasets beyond 

Memorial Tunnel. 

Future directions (bridging to control).  

Two immediate extensions are promising: 

1. Predictive control – coupling FDS-derived reduced-order models with AI supervisors (Zhou 2024) to 

anticipate HRR surges and pre-bias fan settings, and 

2. Multi-objective tuning – co-optimizing ASET/RSET and energy with constraints on fan thermal limits 

and smoke back-layering metrics. A compact ASET/RSET–HRR map, like Fig. 7, can serve as a plant-

agnostic target for such controllers. 

 

Bottom line. 

Adaptive ventilation does not merely “vent more”; it vents smarter—timing momentum and dilution when 

they buy the most ASET per kWh. In our scenarios, this kept fires ≤ 20 MW on the safe side of the ASET/RSET 
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threshold and substantially narrowed the margin at 30 MW (Fig. 6–7), while cutting energy use by ~33 %. These 

are actionable deltas for performance-based design and operations in both transport and mining tunnels. 

 

Limitations and Future Work 

 

Although the presented model provides valuable insight into the interaction between adaptive ventilation and 

human evacuation in tunnel fire scenarios, several limitations must be acknowledged. 

 

1. Simplified geometry: The simulated tunnel was idealised as straight and vehicle-free, without slope or 

cross-section changes. Real tunnels often feature gradient-induced pressure differences and geometric 

irregularities that influence smoke flow and critical velocity. 

2. Combustion modelling: The fire was defined by a prescribed HRR curve without explicit pyrolysis or 

varying fuel composition. In practice, heterogeneous vehicle fuels (diesel, plastics, lubricants) produce 

different soot and CO yields, affecting tenability limits. 

3. Boundary conditions: Portal pressures and natural draught were fixed, neglecting meteorological effects 

that can reverse flow direction during a real incident. 

4. Evacuation dynamics: Psychological factors (panic, decision delay, group behaviour) were not 

considered. These could extend RSET values, particularly in dense populations. 

 

Despite these simplifications, the study captures the dominant fluid-dynamic and thermal phenomena relevant 

for comparative safety assessment. Future research should therefore focus on: 

• incorporating tunnel slope and vehicle blockage effects; 

• extending the model to complex geometries (multi-branch or inclined tunnels); 

• performing full-scale validation in controlled experiments such as the Norou Tunnel Fire Test or 

through sensor data from operating transport tunnels; 

• developing AI-based predictive control that couples FDS data with real-time sensor feedback (Zhou 

et al., 2024). These steps will strengthen the practical implementation of adaptive ventilation in both 

transport and mining tunnel systems. 

 

Conclusions 

 

Based on the CFD simulations of fires in an underground tunnel  

with varying heat release rates (10–30 MW) and different ventilation regimes, the following conclusions can 

be drawn: 

1. Adaptive ventilation control reduced the length of smoke back-layering by 50% compared with the static 

regime (from 120 m to approximately 60 m for a 20 MW fire). 

2. The maximum CO concentration in the evacuation zone decreased by 25–35% under adaptive control, 

while average values remained below 500 ppm, complying with international safety criteria for human 

tenability. 

3. m·s⁻¹Visibility in the breathing zone was extended by approximately 100 s compared to static ventilation, 

reducing the risk of disorientation and improving rescue operation conditions. 

4. The ASET/RSET ratio reached values ≥ 1 for all fire scenarios up to 20 MW, confirming a safe evacuation 

margin in accordance with Hwang et al. (2021) and Yuan et al. (2020). 

5. The ventilation system's energy efficiency improved by 30–40% due to reduced fan operating time, 

lowering operational costs without compromising safety. 

6. The proposed adaptive ventilation control approach can be considered a promising tool for modernising 

tunnel and mining ventilation systems. Its integration with sensor logic or artificial intelligence algorithms 

could enable practical implementation in next-generation automated safety systems. 
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