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Abstract 

This study addresses rotary-axis positioning errors that degrade 

dimensional fidelity during machining of mining-equipment 

components – particularly conical picks and their toolholder 

interfaces, where press-fit sockets and conical shanks demand tight 

tolerances. We propose a data-driven identification framework that 

learns the mapping from R-Test trajectories to the worktable’s 

rotation-center errors along X′/Y′/Z′. Experiments on two five-axis 

milling machines (monoBLOCK 65 and Lasertec 65) covered full 

360° rotations (Δα = 30°), both directions of motion, radii R = 75–

300 mm, and feeds vf = 500–5000 mm/min. After statistical analysis 

and feature engineering, three models were benchmarked: 

a multilayer perceptron (MLP), a Kolmogorov-Arnold network 

(KAN), and a multi-output Gaussian process (MOGP). MOGP 

achieved the best predictive fidelity (average R2 = 0.991, 

MPE = 2.29%, MSE = 0.002), outperforming KAN (R2 = 0.974) and 

MLP (R2 = 0.761). Error distributions showed weak sensitivity to 

feed and motion direction (left-right correlations ≥ 0.90, lowest for 

Z′), indicating predominantly geometric/thermal origins. The learned 

model enabled a high-resolution “error map” of the worktable based 

on resultant displacement, supporting corrective actions that preserve 

press-fit tolerances and free rotation in mining-component 

assemblies. We further implemented an integrated diagnostic tool 

that ingests raw R-Test exports, validates units/ranges, performs 

model-aware inference, and generates bilingual (PL/EN) technical 

reports. Embedded rule-based logic flags likely mechanisms 

(backlash, thermal drift, geometric misalignment) from trajectory 

patterns, bridging quantitative predictions with maintenance 

decisions. The results demonstrate that nonparametric, uncertainty-

capable multi-output modeling is a robust foundation for rotary-axis 

error cartography and diagnostics, with immediate applicability to 

quality assurance and predictive maintenance in the machining of 

mining-equipment components. 
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Introduction 

 

Machining of mining equipment components imposes tight geometric requirements on multi‑axis CNC 

machine tools, because dimensional fidelity at the interfaces – press‑fit sockets, conical shanks, flanges, and 

housings – directly determines cutting‑system reliability. In tangential cutting systems, conical picks are the 

primary cutting tools: failures at the pick-to-toolholder assembly result in lower output, higher drive loads, and 

unplanned downtime. Field and laboratory studies consistently highlight dominant failure modes: wear and/or 

chipping of the carbide tip, wear and buckling of the steel body, and accelerated destruction when free rotation is 

blocked in the holder socket (Cheluszka et al., 2021; Sun & Li, 2014). The assembly context and typical 

geometrical relationships for conical picks and auxiliary components are illustrated in Figure 1. 

 

 
Fig. 1. Example view of conical pick with auxiliary components 

 

Design and manufacture of the pick-holder system critically affect wear rate and uptime. Reported causes of 

premature failures include adverse wear mechanisms and carbide fractures, improper geometry, and loss of free 

rotation; by contrast, precision of the mounting components (holder bores, sockets, press-fit seats) promotes stable 

load sharing and reduces failure rates (Murčinková et al., 2018; Wirtgen, n.d.). Ensuring such precision depends 

on capable CNC machining and proper calibration of the machine’s kinematic chain; for complex shank, flange, 

and socket geometries, five-axis accuracy is decisive in maintaining tolerances that guarantee free rotation and 

balanced forces under abrasive service (Guo et al., 2024; Qiao et al., 2017; Kovanič et al, 2020; Kovanic et al, 

2021) 

A persistent practical bottleneck is the identification of rotary-axis positioning errors. Misalignment, 

backlash, and thermally driven drift manifest as dimensional deviations in sockets and shanks, resulting in 

improper press fits and a risk of jamming or operational backlash. Studies confirm that systematic identification 

and compensation of rotary-axis errors improve part quality and repeatability while reducing scrap (Li et al., 2019; 

Zha & Peng, 2025, ). Recent developments relevant to mining-component machining include high-information-

density R-test (capacitive/laser) procedures that sense tri-axial deviations during coordinated motion and enable 

faster decoupling of position‑independent and position-dependent geometric errors (PIGEs/PDGEs); transposed-

matrix and constraint-aware formulations further improve robustness of parameter identification and controller-

level compensation (Hsieh et al., 2024; Tang et al., 2025; Chen et al., 2025; Yao et al., 2023). 

Parallel progress in machine learning (ML) expands the diagnostic and predictive toolkit for CNC error fields. 

Beyond point-estimate regressors, Gaussian-process regression and uncertainty-aware models provide calibrated 

prediction intervals suitable for confidence-bounded compensation and maintenance scheduling; reviews and 

applications report whole-machine thermal/geometric modeling, uncertainty-driven compensation, and real-time 

surrogate architectures for on-machine deployment (Jóźwik et al., 2024; Tomiło et al., 2023; Yadav et al., 2024; 

Mu et al., 2025; Kaftan et al., 2025; Huang et al., 2025). 

This article argues that identifying CNC rotary-axis errors is a critical enabler of quality in cutting-tool 

assemblies for mining applications. While traditional calibration remains effective, its cost and downtime motivate 

data-driven approaches. Accordingly, we present an ML-based framework for reliable estimation of the geometric 

error field of the entire CNC machine worktable, using high-resolution R-test data to learn mappings from radius, 

feed, motion direction and rotation angle to the table’s rotation-center errors along X′/Y′/Z′; we benchmark MLP, 

KAN and multi-output GPR and discuss implications for diagnostics and compensation in machining of mining 

equipment components. 
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Literature Review 

 

Conical picks and their toolholder interfaces provide a representative case in which machining tolerances 

govern reliability under abrasive cutting. Prior work has identified design and process factors that improve the 

functional performance of conical picks (Cheluszka et al., 2021). Complementary studies on heavy-duty 

components – such as bearing rings and hydraulic-cylinder liners – highlight the importance of precision fits and 

surface integrity, consistent with the tolerance requirements of the socket-shank press fit considered here (Jouini 

et al., 2022; Dzyura & Maruschak, 2021; Sender & Buj-Corral, 2023). At a broader level, developments in 

materials processing for mining equipment – for instance, diamond-abrasive finishing of wear-resistant parts – 

underscore that geometric control and surface finish are key determinants of uptime and maintenance costs (Wang 

et al., 2025; Wen et al., 2025). 

Rotary-axis error measurement and identification (5-axis CNC). For the socket and holder features of mining 

components, rotary-axis accuracy dominates form and positional fidelity. Beyond DBB and laser interferometry, 

R-test variants raise information density by sensing tri-axial deviations during coordinated motion. Laser R-test 

enables angular-position calibration and controller-integrated compensation, with documented accuracy gains on 

complex parts (Hsieh et al., 2024). Concurrently, transposed-matrix identification using laser trackers accelerates 

registration between tracker and machine coordinates, improving decoupling of linear/rotary error terms (Tang et 

al., 2025). Constraint-aware formulations enforce theoretical invariants of the R-test to stabilize transformation 

matrices when installation parameters drift (Chen et al., 2025). Efficient dual-five-axis procedures further 

compress calibration loops by combining geometric and dynamic error identification (Xu et al., 2024), while 

simultaneous schemes estimate PDGEs and PIGEs of dual rotary axes in a single campaign – a feature relevant to 

table-tilting architectures common in component finishing (Yao et al., 2023). 

From identification to compensation in mining-component machining. Comprehensive reviews detail 

advances in geometric-error measuring/modeling and accuracy-design strategies for CNCs, providing theoretical 

bases for pairing R-test-derived parameters with controller compensation tables (Zhang et al., 2024; Wang et al., 

2025). Influence-analysis frameworks and R-test-based identification of tilting-head/rotary-table errors (Lyu et al., 

2024) support prioritization of error contributors when machining sockets and shanks with tight rotational-

symmetry constraints. For productionized mining components beyond conical picks – e.g., slewing-bearing seats, 

flanges, hydraulic cylinder ends – these methods reduce rework and improve interchangeability. 

Data-driven error modeling and uncertainty. Machine-learning methods are playing an increasingly important 

role in predicting thermal and geometric errors. Reviews emphasize Gaussian-process regression for accuracy and 

calibrated uncertainty (Mu et al., 2025), while applied studies demonstrate whole-machine GPR models (Chen et 

al., 2025), uncertainty-driven compensation that uses prediction intervals to gate corrections (Kaftan et al., 2025), 

and real‑time surrogate compensation architectures that retain at least 95% of a high-capacity model’s accuracy 

inside CNC loop constraints (Huang et al., 2025). Additional work on gradient-boosting/XGBoost and iterative 

screw compensation shows practical pathways to integrate learned models with mechatronic subsystems (Rong et 

al., 2023; Gao et al., 2024). In mining-component machining, these approaches can trigger recalibration when 

predictive uncertainty crosses thresholds, thereby protecting press-fit quality and free rotation in sockets even 

under thermal drift and tool wear. 

 

Materials and Methods 

 

The subject of the research were two five-axis CNC milling machines with a tilting rotary table: monoBLOCK 

65 and Lasertec 65, on which measurements of the kinematic positions of the rotary axes were performed. The 

selection of these machine tools was dictated by the different levels of use: the monoBLOCK 65 was used 

cyclically for testing, while the Lasertec 65 was used periodically. The monoBLOCK 65 machine was equipped 

with a Sinumerik 840D control system with a maximum spindle speed of 30.000 rpm, while the Lasertec 65 was 

equipped with a Sinumerik 840D control system with a maximum speed of 24.000 rpm. 

The study used the R-Test measurement system, consisting of a measuring head, a mandrel, and a reference 

ball. The head was mounted in the spindle tool holder, while the measuring ball was mounted on the machine tool 

table at a specified distance from the center of rotation (R). The head was equipped with three measuring 

transducers operating at 2.4 GHz, enabling the recording of relative deviations in the reference ball position relative 

to the head. A photo of the R-test system is shown in Figure 2. 
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Fig. 2. The R-Test system 

 

The measurement program controlled the interpolated movement of the machine table within a range of 360°, 

with a stroke angle of α = 30° and two directions of movement (right and left). Four feed speeds were used: 500, 

2000, 3500, and 5000 [mm/min]. Measurements were performed for radii R = 75, 150, 225, and 300 [mm]. 

The results from measurements carried out on the machines presented above were used to perform statistical 

analyses and feature engineering, and then to develop and compare machine learning models to select the best one. 

As part of this article, an IT tool was also developed – an application enabling the analysis of work table errors 

and inference based on the selected machine learning model. The research methodology used is presented in 

Figure 3. 

 

Fig. 3. Methodology of the study 

 

In addition, a numerical analysis of the results of CNC machine tool measurements was carried out. These data 

were collected as the measurement radius R, feed rate vf, motion direction D, and table rotation angle α of the 

CNC machine tools. Then models were developed to estimate the position errors of the table's center of rotation 

in three linear axes designated X', Y', Z'. Statistical analysis was carried out to determine the overall difficulty of 

the problem. This allowed the selection of appropriate data modeling methods. To model the relationships among 

the described variables, 3 approaches based on a multilayer perceptron (MLP), a Kolmogorov-Arnold network 

(KAN), and a multi-output Gaussian process (MOGP) were considered. The models were compared using 2 mean 
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error (MPE) metrics and the R2 coefficient of determination. The metrics in question are represented by equations 

(1) and (2): 

𝑀𝑃𝐸(𝑦, 𝑦) =
100%

𝑛
∑

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

𝑛

𝑖=1

 (1) 

where: 

𝑛 – number of samples, 

𝑦𝑖  – i-th ground truth value, 

𝑦𝑖 – i-th estimated value. 

𝑅2(𝑦, 𝑦) = 1 −
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (2) 

where: 

𝑦 – mean of ground truth values. 

 

Due to the nature of the analyzed data and the possibility of complex, nonlinear relationships between input 

and output variables, a decision was made to develop and apply machine learning models based on three different 

approaches: 

• Multilayer Perceptron (MLP) 

• Kolmogorov-Arnold networks (KAN); 

• Gaussian Process (GP). 

 

The use of machine learning-based solutions is further justified by numerous reports in the literature 

indicating the high effectiveness of these methods in areas related to machine tool technology and, more broadly, 

in the fields of production engineering and technological process analysis, as well as in issues related to mining 

(Hussain et al., 2025; Kayathingal et al., 2025; Senthil et al., 2021). 

 

MLP model 

A multilayer perceptron (MLP) is one of the fundamental architectures of artificial neural networks, 

characterized by the presence of at least one hidden layer between the input and output layers. The presence of 

these additional layers enables effective modeling of complex, nonlinear relationships between input and output 

data, thereby significantly increasing the model's approximation capacity. The MLP structure is based on 

sequential signal processing by alternating layers of linear transformations, implemented using weight matrices 

and offset vectors (biases), and nonlinear activation functions, which introduce the nonlinearity necessary to solve 

classification and regression problems. MLP is a layered artificial neural network architecture, consisting of at 

least one hidden layer, which allows modeling complex nonlinear relationships. This type of model uses layers of 

linear transformations – weight matrices and nonlinear activation functions (Singh & Banerjee, 2019). The 

principle of a single neuron in the MLP layer is shown in equation (3): 

𝑦𝑙(𝑥) = 𝜙(∑𝜔𝑙,𝑖𝑥𝑙,𝑖 + 𝑏𝑙

𝑛

𝑖=1

) (3) 

where: 

𝑙 – l-th layer; 

𝜙(∙) – activation function; 

𝑥𝑖 – 𝑖-th element of input 𝑥; 

𝜔𝑖 – 𝑖-th weight; 

b – bias. 

 

KAN model 

Unlike multilayer perceptrons (MLPs), networks with the KAN (Kolmogorov-Arnold network) architecture 

do not rely on the classic alternating linear and nonlinear activation function mechanism. Instead, they use direct 

transformation of input values using a set of adaptive basis functions, whose shape and parameters are adjusted 

during the learning process. The theoretical foundation of this concept is the Kolmogorov-Arnold approximation 

theorem (Hou & Zhang, 2024; Liu et al., 2024; Ta, 2024). This theorem states that every continuous 𝑛-variable 

function defined on a compact domain (for instance, an 𝑛-dimensional cube) can be expressed as a finite 

combination of continuous single-variable functions and their sum. Formally, let 𝑓 be any continuous function 

from the space Rn in R. Then, there exist continuous one-dimensional functions 𝛷𝑞 and 𝜙𝑞,𝑝, defined respectively 

for the indices 𝑝 and 𝑞, such that equation (4), representing the Kolmogorov-Arnold decomposition, is satisfied. 

This result provides the mathematical basis for designing KAN networks, in which the learning process boils down 

to constructing and tuning these basis functions to map a given input-output relationship with a given 

approximation accuracy. 
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𝑓(𝑥1, … , 𝑥𝑛) = ∑ 𝛷𝑞 (∑𝜙𝑞,𝑝(𝑥𝑝)

𝑛

𝑝=1

)

2𝑛+1

𝑞=1

 (4) 

In KAN architecture, a key element is the construction of basis functions that enable the transformation of 

input data in accordance with Kolmogorov-Arnold approximation theory. In practical implementations, B-splines 

are used for this purpose, which are a family of basis functions defined locally on intervals. These splines ensure 

continuity and smoothness of a specified order at the boundaries of the intervals. The construction process begins 

with selecting nodes, i.e., a set of points that define the boundaries of subintervals on which individual fragments 

of the function are defined. The distribution of nodes determines the model's local flexibility and directly impacts 

the network's ability to approximate complex functions. 

The value of the basis function at any point is calculated using the Cox-de Boor recursive formula – 

equation (5). This allows for stable and efficient determination of the values of basis functions at each point, based 

on the given nodes and coefficients (Ta, 2024). 

𝜙𝑞,𝑝(𝑥𝑝) =∑𝐾𝑞,𝑝,𝑖 ∙ 𝐵𝑖,𝑘(𝑥𝑝)

𝑛

𝑖=0

 (5) 

where: 

𝐵𝑖,𝑘(𝑥𝑝) – k-degree B-spline, 

𝐾𝑞,𝑝,𝑖 – control factor, 

𝑛 – nodes number. 

 

Gaussian Process 

 GPs are nonlinear, probabilistic models used to model functions and estimate values at given points. 

Formally, they can be treated as a generalization of the multidimensional normal distribution to an infinite-

dimensional space, allowing probability distributions to be defined directly on the function space. Thanks to this, 

GPs not only allow the prediction of function values but also the quantification of the uncertainty associated with 

these predictions (Beckers, 2021; Dudek et al., 2022). 

Let 𝑓𝐺𝑃(𝑥) be a measurable function defined on the sample space with index 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛𝑥, which is a random 

variable on this space. The a priori distribution in the Gaussian process can be fully described by the mean function 

𝑚(𝑥) and the covariance function 𝑘(𝑥, 𝑥′) according to equation (6): 

𝑓𝐺𝑃(𝑥)𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (6) 

For tasks requiring the simultaneous estimation of multiple output parameters, an extension of the Gaussian 

process, the multi-output Gaussian process (MOGP), is used. This method allows capturing relationships and 

similarities among output values estimated from common input parameters (Bonilla et al., 2007). For this purpose, 

a suitably defined covariance function is used, as shown in equation (7): 

𝑘([𝑥, 𝑖], [𝑥′, 𝑗]) = 𝑘𝑅𝐵𝐹(𝑥, 𝑥
′) ∗ 𝑘𝑜𝑢𝑡(𝑖, 𝑗) (7) 

where: 

𝑥 – value from the data set; 

𝑥′ – value from the data set with which the value 𝑥 is compared. 

𝑘𝑅𝐵𝐹  – Radial Basis Function, 

𝑘𝑜𝑢𝑡 – inter-output covariance lookup table; 

i, j – output indices 

 

Dataset and feature engineering 

 

The developed data set included 1.568 measurements of deviations of the position of the center point of the 

reference sphere in three linear axes, marked as X', Y', and Z'. For each measurement, the values of the input 

parameters were also recorded: R – radius [mm], vf – feed rate [mm/min.], D – direction of movement, and α – 

angle of rotation [°]. In the initial stage of statistical analysis, basic measures of central tendency and dispersion 

were determined, including arithmetic mean, standard deviation, minimum and maximum values, and first (Q1), 

second (Q2, median), and third (Q3) quartiles. The analysis showed that parameters X' and Y' were the most 

variable, while parameter Z' had the lowest standard deviation, indicating a smaller spread of values relative to the 

mean. In addition, parameters X' and Y' showed a wider range of variability compared to parameter Z'. In the case 

of parameter X', the distribution of values, assessed based on the median (Q2), suggests a predominance of higher 

values in the upper part of the distribution. The skewness analysis showed that the distribution of deviations for 

the X'-axis is characterized by a slight positive skewness (0.136), which means a slight shift of the distribution 

towards positive values, but this effect is very weak, and the distribution can be considered close to symmetrical. 

For the Y'-axis, the skewness value was 0.403, indicating moderate right-sided asymmetry, i.e., a tendency for 

single higher positive values to occur. On the other hand, for the Z'-axis, a negative skewness of -0.753 was 
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obtained, which means left-skewed asymmetry – the distribution is shifted towards negative values, and the tail of 

the distribution is more elongated on the side of lower values. In terms of kurtosis, the parameters X' (-0.569) and 

Y' (-0.458) are characterized by negative kurtosis, indicating a flat (platykurtic) shape of the distribution – the 

values are more dispersed, and the peak of the distribution is lower and wider than in the normal distribution. In 

turn, the Z' parameter showed a positive kurtosis (0.844), indicating a leptokurtic distribution, characterized by a 

higher, more slender peak, greater concentration of values around the mean, and heavier tails. The results of the 

statistical analysis are presented in Table 1. 

 
Tab. 1. Summary of the results of the statistical analysis 

Numerical 

controlled 
axis 

Mean Standard deviation Minimum Q1 Q2 Q3 Maximum Skewness Kurtosis 

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [-] [-] 

X' 0.011 0.019 -0.028 -0.002 0.011 0.022 0.058 0.136 -0.569 

Y' 0.006 0.018 -0.029 -0.006 0.002 0.017 0.047 0.403 -0.458 

Z' 0.000 0.007 -0.022 -0.003 0.001 0.004 0.017 -0.753 0.844 

 

In the next stage of statistical analysis, the influence of the feed rate parameter (vf) on the distribution of 

deviations in the X', Y', and Z' axes was assessed. As in the previous analysis, basic statistical measures were 

determined along with skewness and kurtosis coefficients, with the study conducted separately for values of vf = 

500, 2000, 3500, and 5000 mm/min. The results indicate high stability of the distributions with respect to the feed 

velocity – the mean values, standard deviations, and quartile ranges remained virtually unchanged across all 

variants. The minimum and maximum deviation values showed only slight differences, falling within very similar 

ranges. However, noticeable changes occurred in the area of skewness and kurtosis. For the X' and Y' axes, the 

skewness values were positive and remained at a comparable level (about 0.1–0.4), indicating a slight right-sided 

asymmetry, stable with respect to the increase in feed velocity. The Z'-axis showed negative skewness (about -

0.73 to -0.79), indicating left-sided asymmetry, which was also maintained across all variants. Similarly, the 

kurtosis values remained consistent – negative for the X' and Y' axes - bistatic distribution shape and positive for 

the Z' axis - leptokurtic distribution. In summary, the vf parameter did not have a significant impact on the 

variability and nature of the deviation distributions. The relationships observed for skewness and kurtosis were 

stable regardless of the adopted velocity value. The discussed data are presented in Table 2. 

 
Tab. 2. Summary of the results of the statistical analysis 

Numerical 

controlled 
axis 

vf = 500 vf = 2000 vf = 3500 vf = 5000 

X' Y' Z' X' Y' Z' X' Y' Z' X' Y' Z' 

Mean 

[mm] 
0.011 0.006 0.000 0.011 0.006 0.000 0.011 0.006 0.000 0.011 0.006 0.000 

Standard 

deviation 

[mm] 

0.019 0.018 0.007 0.019 0.018 0.007 0.019 0.018 0.007 0.019 0.018 0.007 

Minimum 

[mm] 
-0.028 -0.029 -0.022 -0.028 -0.029 -0.021 -0.027 -0.029 -0.021 -0.028 -0.029 -0.021 

Q1 [mm] -0.002 -0.007 -0.003 -0.002 -0.006 -0.003 -0.002 -0.006 -0.003 -0.002 -0.006 -0.003 

Q2 [mm] 0.010 0.002 0.000 0.011 0.002 0.001 0.011 0.002 0.001 0.011 0.002 0.001 

Q3 [mm] 0.022 0.017 0.004 0.021 0.017 0.005 0.021 0.017 0.004 0.022 0.018 0.004 

Maximum 

[mm] 
0.058 0.047 0.017 0.057 0.047 0.017 0.058 0.047 0.017 0.058 0.047 0.017 

Skewness 
[-] 

0.167 0.423 -0.741 0.135 0.406 -0.785 0.139 0.397 -0.759 0.102 0.390 -0.728 

Kurtosis 

[-] 
-0.549 -0.434 0.858 -0.570 -0.445 0.887 -0.549 -0.457 0.863 -0.592 -0.467 0.801 

 

In order to present the data and kernel density more accurately, the data is presented using a violin plot in 

Figure 4. 
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Fig. 4.  Violin plot – feed rates 

 

In the next stage of statistical analysis, the influence of the radius (R) on the distribution of deviations in the 

X', Y', and Z' axes was assessed. As in the case of the vf parameter, the mean values, standard deviations, ranges, 

and skewness and kurtosis coefficients were determined for individual radius values (R = 75, 150, 225, and 300 

mm). The results indicate that the mean values and standard deviations changed only slightly with increasing 

radius. The greatest variation was observed for the Z'-axis, where the standard deviation increased from 0.003 mm 

(R = 75) to 0.011 mm (R = 300), which means a gradual increase in the spread of values. For the X' and Y' axes, 

the deviation values were relatively stable, with fluctuations between 0.018 and 0.020 mm. In terms of skewness, 

the distributions in the X' and Y' axes showed varied characteristics – from slight right-sided asymmetry (for 

instance, X', R = 150, skewness 0.435) to positive, more pronounced asymmetry (Y', R = 225, skewness 1.067). 

Negative values occurred mainly in the Z'-axis, indicating left-sided asymmetry (for instance, -0.712 for R = 300). 

In the case of kurtosis, all distributions had negative values, indicating a platykurtic distribution – a wider, flatter 

peak compared to the normal distribution. The lowest kurtosis value (-1.429) was observed for the X'-axis at R = 

75, while at larger radii it ranged from -0.7 to -0.1, indicating a decrease in the flattening effect. The increase in 

the radius R did not significantly affect the mean and median values of the deviations, but it did increase variability 

along the Z' axis and reveal clear differences in the distributions' asymmetry, especially along the Y' axis. The 

nature of the distributions (platykurticity) remained consistent for all analyzed variants. The data discussed are 

presented in Table 3. 

 
Tab. 3. Summary of the results of the statistical analysis 

Numerical 
controlled 

axis 

R = 75 R = 150 R = 225 R = 300 

X' Y' Z' X' Y' Z' X' Y' Z' X' Y' Z' 

Mean 
[mm] 

0.012 0.001 0.001 0.013 0.006 -0.001 0.010 0.009 -0.002 0.009 0.009 0.001 

Standard 

deviation 
[mm] 

0.018 0.018 0.003 0.020 0.018 0.004 0.018 0.015 0.007 0.019 0.020 0.011 

Minimum 

[mm] 
-0.016 -0.029 -0.004 -0.022 -0.017 -0.011 -0.027 -0.011 -0.020 -0.028 -0.026 -0.022 

Q1 [mm] -0.006 -0.013 0.000 0.000 -0.007 -0.003 -0.003 -0.002 -0.006 -0.004 -0.005 -0.007 

Q2 [mm] 0.009 -0.001 0.001 0.011 0.001 0.000 0.014 0.002 -0.001 0.005 0.008 0.004 

Q3 [mm] 0.029 0.015 0.003 0.020 0.016 0.003 0.019 0.015 0.004 0.021 0.025 0.009 

Maximum 

[mm] 
0.042 0.031 0.007 0.058 0.047 0.007 0.044 0.045 0.010 0.047 0.047 0.017 

Skewness 

[-] 
0.104 -0.035 0.156 0.435 0.959 -0.271 -0.272 1.067 -0.643 0.072 0.122 -0.712 

Kurtosis 
[-] 

-1.429 -1.145 -0.330 -0.308 -0.285 -0.689 -0.366 -0.093 -0.483 -0.738 -0.848 -0.713 

 

In order to present the data and kernel density more accurately, the data is presented using a violin plot in 

Figure 5. 
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Fig. 5.  Violin plot – radius 

 

Pearson's correlation coefficient was used for feature engineering, and a correlation matrix was created based 

on it. The analysis was performed separately for both directions of movement – left (←) and right (→) – in relation 

to each axis. The main objective of the study was to determine whether the direction of movement has a significant 

impact on the magnitude of axial errors. The analysis showed that measurements obtained when the table rotated 

left and right were highly consistent. The lowest correlation coefficient recorded between movements in opposite 

directions, 0.9, was for the error on the Z'-axis. Such a high correlation value indicates that the direction of 

movement is not a significantly differentiating feature, as the errors recorded in both directions show a strong 

interdependence. The correlation matrix is shown in Figure 6. 

 

 
Fig. 6.  Correlation matrix 

 

Results 

 

An artificial neural network model based on the multilayer perceptron (MLP) architecture was developed. 

The constructed network consisted of four input variables, two fully connected (dense) hidden layers containing 8 

and 16 neurons, respectively, and three output variables. The optimization process confirmed that this architecture 

configuration provided the best values for the analyzed model quality assessment metrics. Mean square error 
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(MSE) was adopted as the loss function, while Rectified Linear Unit – ReLU was used as the activation function 

due to its good properties in terms of nonlinear data mapping and learning process stability. The model was trained 

for 100 epochs using the ADAptive Moment estimation – ADAM optimization algorithm, with the following 

hyperparameter settings: 𝛽1 = 0.9, 𝛽2 = 0.999 oraz 𝜖 = 10−8 in accordance with the recommendations in the 

literature (Kingma & Ba, 2014). The upper limit of the learning rate parameter was set at 𝜄 = 0.1. The course of 

changes in the loss function value in successive epochs of the learning process is illustrated in Figure 7. 

 

 
Fig. 7. Loss function – training and validation set (MLP) 

 

The developed MLP model achieved an MSE of 0.031 on the validation set, while on the training set, it 

achieved 0.035. These results correspond to the hundredth epoch of the learning process, when the network 

achieved the best fit. For the test set, the model achieved an MPE of 14.68%, an average R2 of 0.761, and an MSE 

of 0.032. 

Another model was developed based on the assumptions of the KAN (Kolmogorov-Arnold network) 

architecture. Initially, an architecture comprising a single summing node was constructed, but its generalization 

ability proved insufficient. For this reason, various configurations were considered, differing in the number of 

layers and summing nodes. In the optimization process, an architecture consisting of a single hidden layer 

containing two summing nodes was ultimately selected. The input data was normalized, and the data space was 

defined according to Equation (8). 

{𝑥 ∈ 𝑅 ∨ −1 ≤ 𝑥 ≤ 1} (8) 

The input space was divided into 24 nodes, enabling the approximation of the function at discrete points. 

Twelve characteristic points were used for the approximation itself. The limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the network parameters (Liu et al., 2018). The model 

was trained for 100 epochs, with MSE as the loss function. The best metric values were obtained at the hundredth 

epoch, where MSE = 0.067 was achieved on the validation set, and MSE = 0.066 on the training set. The course 

of changes in the loss function in successive epochs of the learning process is illustrated in Figure 8. 

 

 
Fig. 8. Loss function – training and validation set (KAN) 

 

On the test set, the developed model achieved an MPE of 4.86%, with a mean R2 of 0.974. An MSE value of 

0.004 was also obtained, indicating very high accuracy in mapping the studied relationships. A visualization of the 

developed model is presented in Figure 9. 
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Fig. 9. Developed KAN architecture 

 

The last model analyzed was MOGP. In this case, an accurate MOGP model consisting of a single layer was 

developed. The learning process was carried out using the ADAM algorithm, with the same parameters as those 

used in the MLP model.  Marginal Log Likelihood (MLL) was adopted as the loss function, which accounts for 

the a priori distribution of Gaussian processes and the probability of the observed output data. This function 

integrates over all possible realizations of the function, enabling probabilistic modeling of relationships between 

data. The formal representation of the MLL function is presented in equation (9). 

𝑀𝐿𝐿(𝑥, 𝑦) = 𝑝𝑓(𝑦|𝑥) = ∫𝑝(𝑦 ∨ 𝑓𝐺𝑃(𝑥))𝑝(𝑓𝐺𝑃(𝑥) ∨ 𝑥)𝑑𝑓 (9) 

The model underwent a learning process consisting of 100 epochs. In the hundredth epoch, the best values of 

the analyzed metric MLL were obtained, which amounted to -1.436 for the training set and 1.437 for the validation 

set, respectively. The course of changes in the loss function in successive epochs of the training process is shown 

in Figure 10. 

 

 
Fig. 10. Loss function – training and validation set (MOGP) 

 

On the test set, the model achieved an average R2 of 0.991, an MPE of 2.29%, and an MSE of 0.002. Based 

on the research conducted, it was found that the model based on the MOGP solution achieved the best results in 

estimating deviation parameters. It achieved the highest values across all metrics compared with the other models 

analyzed, confirming its superiority in terms of accuracy and generalization. A detailed set of metric values 

obtained for each of the tested models is presented in Table 4. 

 
Tab. 4. Summary of the model’s metrics 

 

Numerical 

controlled 
axis 

MOGP KAN MLP 

𝑅2 

X' 0.993 0.983 0.756 

Y' 0.991 0.967 0.786 

Z' 0.989 0.972 0.740 

Average 0.991 0.974 0.761 

MPE, % 2.29 4.86 14.68 

MSE [-] 0.002 0.004 0.032 
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At the final stage of the research, a map of the work table was developed, taking into account the deviation 

values at individual measurement points using the MOGP model. For clearer visualization of the results, the 

deviations along the three axes were combined into a resultant displacement, as defined in equation (10). 

𝑅𝑑 = √(𝑋′)2 + (𝑌′)2 + (𝑍′)2 (10) 

The work table map is shown in Figure 11. 

 
Fig. 11. Work table map 

 

Diagnostic system – architecture and implementation   

In the final phase of the study, a diagnostic system was developed that integrates previously validated 

machine-learning models with a procedure for analyzing error trajectories for rotary axes. The tool executes a 

processing pipeline from raw R-Test files to a technical report and is adapted to operate on multi-session 

measurement datasets. Its functional core comprises three logical components: input data preparation, inference 

and anomaly classification, and automatic reporting with maintenance recommendations (Figure 12). This 

corresponds to the role allocation of the models (MLP/KAN/MOGP) adopted in the paper for nonlinear data, as 

well as to the choice of evaluation metrics (R², MPE, MSE). In particular, the default inference configuration is 

MOGP, which reflects the experimentally demonstrated quality advantage over the alternatives KAN and MLP.  

 

 
Fig. 12. Integrated system architecture 

 

The system accepts text files exported from the R-Test and begins the analysis by locating the 

MEASUREMENT_DATA tag, which is followed by the tabular section. The parser reads columns including, 

among others, the angle α in degrees and the displacement components X′, Y′, Z′, as well as auxiliary fields (time 

and sample indices). Merging multiple files into a single data frame is supported, allowing collation of 

measurements from different radii (R), feeds (vf), and both directions of motion. As a result, the tool remains 
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consistent with the dataset used in the statistical analysis (number of samples; features: R, vf, D, α; outputs: X′, Y′, 

Z′). 

Pre-processing includes consistency validation and range checks, as well as unit harmonization and 

preparation of basic visualizations of displacement trajectories versus angle. At this stage, the user defines 

tolerance thresholds for each axis, which are then used both to mark warning levels on the plots and to perform 

initial qualification of exceedance cases. These settings, available from the graphical interface, are reflected 

immediately in the analysis and in the final report. 

The inference layer provides a choice of model (MLP/KAN/MOGP) and operates in a “model-aware” mode 

on both axial trajectories and the worktable map. In practice, consistent with the results, MOGP is recommended 

as the default predictive path because it most faithfully reproduces the relationships between input features and 

displacements and allows a stable aggregation of the X′, Y′, Z′ components into the resultant displacement, which 

is useful for error cartography of the table. A tabular record of model quality, as well as a description of the training 

process and hyperparameter selection (including the use of MLL for MOGP), is provided in the main results 

section of the manuscript and justifies the default policy adopted in the application. 

Based on the X′/Y′/Z′ trajectories and their relationships to time and direction of motion, the system performs 

consistent diagnostics. In the first step, exceedances of the specified thresholds are checked. Next, rules are 

triggered to distinguish the nature of disturbances: (i) step changes in amplitude in the immediate vicinity of a 

direction change indicate mechanical backlash, (ii) a monotonic increase over time in the absolute values of 

deviations with positive correlation is interpreted as thermal drift, whereas (iii) cyclic components visible in 

spectral analysis suggest a geometric error (for instance, due to misalignment). The implementation of these rules 

was designed to align with the statistical observations from earlier sections: the minor role of motion direction (the 

lowest correlation between opposite directions for the Z′ axis) and the stability of distributions with respect to 

changes in feed vf favor the use of thresholds and heuristics with fixed parameters. In ambiguous cases, a 

classification of “Other” is provided, along with a glossary of explanations (also for the categories Servo/Encoder 

error).  

A set of visualizations ties together the computational and user layers. The graphical interface (Tkinter) 

provides two zones: a control panel with model selection, thresholds, a language switch (PL/EN), and I/O 

operations; and a data presentation area with a 2×2 layout showing the X′/Y′/Z′ traces versus angle and the table 

error map (contouring based on griddata interpolation), supplemented with tabs: diagnostic results, explanations, 

and session history. This architecture facilitates the translation of quantitative findings (for instance, MOGP 

estimates) into visuals compatible with maintenance practice and industrial metrology. The main interface of the 

diagnostic system is shown in Figure 13. 

 

 
Fig. 13. View of the main interface of the diagnostic system 

 

The reporting mechanism generates a PDF file containing a timestamp, model identification, and threshold 

values, a summary of per-sample statistics, and a list of identified anomalies with explanations and 

recommendations. The report is intended as a technical document that can be attached to the quality log and used 

in the predictive-maintenance cycle. Both the report contents and the warning indicators in the interface are 
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maintained in two language versions, which increases the tool’s usefulness in international environments. 

Examples of selected report results are shown in Figure 14. 

It is important that the adopted implementation remains substantively consistent with the analysis results 

presented in the paper. First, the default MOGP preference in the application reflects the quality ranking in the 

results section. Second, the diagnostic layer respects the empirically observed stability with respect to direction of 

motion and feed, so that thresholds and rules do not require complex parameterization dependent on these 

variables. Third, the use of a table map based on resultant displacement corresponds to the method of aggregating 

deviations adopted in the experimental section (which facilitates the chain “model results → error-map panel → 

diagnostic conclusion”). 

 

   

     
Fig. 14. Sample report results 

 

From a technical standpoint, the solution was implemented in Python, using libraries for data processing and 

visualization and GUI modules; spatial interpolation in the error map is based on griddata, and document export 

on the FPDF component. The code implements a bilingual label dictionary, multi-file handling, and a persistent 

session history, which enables reproducibility and auditability of results. Extending the diagnostic functions with 

classes such as “servo” or “encoder” remains an open line of work and can be incorporated into the algorithm on 

the basis of additional, targeted datasets.  

 

Discussion 

 

Our results show that a multi-output Gaussian process (MOGP) most accurately reconstructs the rotary-axis 

error field from R-Test trajectories, achieving the best aggregate performance (average R2 = 0.991, MPE = 2.29%, 

MSE = 0.002) and outperforming both KAN and MLP, while the measured error distributions exhibit weak 

sensitivity to feed vf and motion direction (high left-right correlation, lowest for Z′ ≈ 0.90). These findings indicate 

that the observed deviations have a predominantly geometric/thermal rather than dynamic origin and are consistent 

with the statistical trends reported earlier in the manuscript.  

Contemporary R-test–based procedures increase information density by capturing tri-axial deviations during 

coordinated motion and have been used to drive controller-level compensation (Hsieh et al., 2024). Transposed-

matrix identification with external metrology improves coordinate registration and separates linear and rotary 

terms (Tang et al., 2025), while constraint-aware formulations stabilize parameter estimation under installation 

drift (Chen et al., 2025). Simultaneous schemes for dual rotary axes (Yao et al., 2023) and efficient dual-five-axis 

routines that combine geometric and dynamic errors (Xu et al., 2024) further reduce calibration time. Our 

contribution complements these methods: instead of estimating a fixed parametric set for a specific kinematic error 

model, MOGP learns a nonparametric, correlated multi-output mapping from (R, vf, D, α) to (X′, Y′, Z′). This yields 

high-fidelity surface predictions and a worktable “error map” without additional hardware or complex tracker 

registrations, and it exploits cross-axis covariance that parametric pipelines often ignore. 

Reviews of geometric/thermal accuracy design for CNCs emphasize model structures that handle nonlinearity 

and uncertainty (Zhang et al., 2024; Wang et al., 2025). In data regimes with moderate sample sizes and correlated 

targets, Gaussian-process models typically offer superior inductive bias and calibrated generalization (Mu et al., 

2025), which aligns with the observed MOGP advantage. KAN, grounded in Kolmogorov-Arnold approximation, 

provides flexible basis functions and performed strongly here, yet it lacks the native uncertainty and cross-output 

covariance modeling of MOGP (Hou & Zhang, 2024; Liu et al., 2024). MLP underperformed – consistent with 



Jerzy JÓZWIK et al. / Acta Montanistica Slovaca, Volume 30 (2025), Number 3, 759-775 
 

773 

prior observations that generic feed-forward networks require more data and careful regularization to match GPs 

on smooth, structured mappings (Singh & Banerjee, 2019). Together, this ranking mirrors trends in 

thermal/geometric error prediction where GP-based models or uncertainty-aware surrogates frequently lead 

(Huang et al., 2025; Kaftan et al., 2025; Rong et al., 2023; Gao et al., 2024). 

For conical picks and toolholder interfaces, dimensional fidelity of sockets and shanks governs free rotation, 

load sharing, and wear rate under abrasive cutting (Cheluszka et al., 2021; Sun & Li, 2014). Mounting-component 

precision is a documented lever on reliability (Murčinková et al., 2018) and is also reflected in OEM guidance for 

quick-change systems (Wirtgen, n.d.). By reducing unmodeled rotary-axis positioning errors through accurate 

estimation and map-based visualization, our approach directly supports maintaining press-fit tolerances and 

surface integrity that downstream studies link to uptime (Jouini et al., 2022; Sender & Buj-Corral, 2023). The 

weak dependence on vf and motion direction observed here suggests that, for finishing of sockets/shanks and 

similar rotationally constrained features, compensation efforts should prioritize geometric and thermal sources – 

consistent with recent influence-analysis and R-test identification frameworks for tilting-head/rotary-table 

architectures (Lyu et al., 2024; Guo et al., 2024; Qiao et al., 2017). 

Surveys highlight that the most effective pipelines pair high-information measurements with controller tables 

and continuous monitoring (Zhang et al., 2024; Wang et al., 2025). Our integrated tool operationalizes this concept: 

it ingests raw R-Test exports, standardizes units, applies model-aware inference, and outputs a bilingual, 

maintenance-ready report. Probabilistic outputs typical for GPs could be extended to uncertainty-gated 

compensation (Kaftan et al., 2025) or to real-time surrogates (Huang et al., 2025), closing the loop between 

diagnostics and action.  

 

Conclusions 

 

Based on experimental tests and numerical analyses, a very high correlation between error values and 

movement direction was demonstrated, with a correlation coefficient of 0.9 for the Z-axis only. Statistical analysis 

also confirmed that the feed rate parameter vf had only a marginal effect on the variability of machine tool axial 

errors. Among the machine learning models used, the best results were obtained with the MOGP model, which 

achieved an average R² of 0.991, MPE of 2.29%, and MSE of 0.002. For comparison, the KAN model achieved 

an average R² of 0.974, while the MLP model achieved an R² of 0.761; both alternative approaches exhibited 

significantly higher errors. These results are significant for the production of components for mining machines, 

particularly conical pick blades and their holders. The precision of manufacturing these parts, especially the shanks 

and holder sockets, is crucial to ensure free rotation of the tool during operation and its even wear under highly 

abrasive conditions. Even slight positioning errors of the CNC rotary axes can result in geometric deviations, 

leading to increased friction, jamming, or premature damage to the picks during mining shearers' operation. 

The developed integrated system for monitoring the accuracy and repeatability of multi-axis machine tool 

positioning, based on machine learning methods, has proven to be an effective diagnostic tool in laboratory 

conditions. It consists of three modules responsible for data processing, anomaly detection, and diagnostic report 

generation. The implementation of this type of system in industrial conditions, e.g., in plants producing mining 

tools, enables the prediction of machine tool component wear and the stable maintenance of geometric tolerances, 

which directly translates into higher quality and durability of the conical pick produced. 

One of the most important advantages of the developed solution is its practical usefulness. The combination 

of modern measurement systems with modules based on artificial intelligence not only enables effective control 

of the technical condition of machine tools, but also bridges the gap between the theoretical approach and the real 

needs of the mining industry. A certain limitation of the presented methodology remains the inability to directly 

record data from the R-Test system in the CNC controller, which hinders the full integration of the diagnostic 

procedure with the native control system of the machine tool. 
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