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Abstract 

This study presents a novel Blue-Green Infrastructure (BGI) index 

that integrates hydrological modeling, GIS-based spatial analysis, 

and multi-criteria evaluation through the Analytic Hierarchy Process 

(AHP). The index was developed to assess the suitability and 

prioritization of BGI measures in urban environments, with a focus 

on small and medium-sized cities such as Žiar nad Hronom, Slovakia. 

Five spatial factors—simulated water depth, proximity to hazardous 

areas, slope, land cover, and proximity to roads—were combined to 

create a comprehensive spatial assessment of BGI potential. A 

hydrological simulation using the open-source Itzï model provided a 

dynamic representation of overland flow, improving the diagnostic 

capacity of the index. Scenario analysis was conducted to assess the 

model's sensitivity and robustness under hydrological, urban, and 

environmental weighting schemes. The results show strong 

correlations between the reference and alternative scenarios 

(Pearson's r = 0.92–0.98), confirming the index's stability and 

transferability. The resulting BGI map effectively identified high-

priority areas, particularly zones of natural water accumulation and 

green spaces with favorable slope conditions. Application of the 

index to school sites enabled ranking planned adaptation projects and 

identifying additional high-priority areas not initially included in 

municipal plans. The developed BGI index thus represents a 

practical, data-driven, and transferable tool for supporting evidence-

based urban planning and the strategic implementation of nature-

based solutions. 
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Introduction 

 

The growing rate of urbanization and climate change pose significant challenges for contemporary cities, 

which are increasingly exposed to extreme weather events, particularly intense rainfall and heatwaves (Vojtek and 

Vojteková, 2016). Dense development, extensive impervious surfaces, and the reduced capacity of the landscape 

to naturally retain water lead to an increasing risk of surface runoff and local flooding. These phenomena not only 

have environmental consequences but also cause considerable economic damage and negatively affect the quality 

of life of urban residents. In this context, the concept of BGI, which integrates water and vegetation elements to 

enhance the resilience of the urban environment, is gaining increasing recognition as a promising solution (Ncube 

and Arthur, 2021). 

BGI represents a synergistic integration of natural and urban elements that support ecological stability, 

biodiversity, and quality of life in both urban and rural areas. It is a strategic approach to spatial planning and 

management that incorporates elements such as green roofs, rain gardens, parks, watercourses, retention basins, 

and wetlands (Ghofrani et al 2017; Voskamp and Van De Ven, 2015). BGI is a key tool for enhancing biodiversity, 

managing water resources, and improving the quality of life. It offers a wide range of benefits (Fenner, 2017; 

Hamann et al, 2020) related to ecological stability, social sustainability, and economic gains. Ecological benefits 

include improved air and water quality (Pugh, 2012) through natural filtration, increased biodiversity, and 

enhanced landscape capacity to retain stormwater (Kapetas and Fenner, 2020; Kozak et al, 2020; O’Donnell, et al, 

2020). BGI elements such as wetlands and rain gardens play a crucial role in regulating flood risks, thereby 

reducing the burden on sewage systems and supporting sustainable water management (O’Donnell and Thorne, 

2020; Deely et al, 2020). In recent years, BGI has become a central component of climate change adaptation 

strategies and has been strongly promoted at the European level through policies for sustainable urban 

development. 

Mapping and assessment of BGI are key processes that enable effective planning (Cortinovis and Geneletti, 

2018), monitoring, and improvement of its elements. The assessment of BGI focuses on analyzing the quality and 

functionality of individual BGI components (O’Donnell, et al, 2017). Specific indicators and metrics are applied 

to quantify various aspects of BGI (Ncube et al 2018). In addition, GIS analyses provide spatial evaluation that 

supports the identification of ecological corridors and the connectivity between BGI elements. Despite the growing 

importance of BGI, unified, quantitative approaches to evaluating the effectiveness of individual measures remain 

lacking, particularly for reducing surface runoff. Most existing methods focus on qualitative assessment or employ 

simplified indicators that fail to capture the complexity of the urban environment. This gap highlights the need for 

developing new, more precise indices that would enable comparable and objective evaluation of BGI functionality 

under different urban conditions.  

One of the key methods that allows for a more detailed examination of the interactions between rainfall, the 

surface, and runoff is surface runoff simulation. Through hydrological models, it is possible to identify problematic 

areas of water accumulation, estimate runoff volumes, and assess the contribution of specific BGI measures to 

their reduction (Harlis and Seo, 2024; Kaur and Gupta, 2022). These models, combined with GIS analyses, provide 

a comprehensive and reliable framework for integrated assessment by enabling the use of spatial data on 

topography, land use, soil properties, and vegetation cover. 

The main objective of this article is to develop a new index for assessing BGI, which will serve as a supportive 

tool for strategic, effective planning of measures in urban environments. The index is designed to reflect the 

specific conditions of small and medium-sized towns, which often face limited financial and technical capacities 

when implementing adaptation measures. An example of such a town to which this approach can be applied is 

Žiar nad Hronom, which was chosen as our study area. The specific combination of urban structure, existing green 

spaces, and technical infrastructure makes Žiar nad Hronom a representative example of a smaller Slovak town 

where new approaches to BGI assessment and planning can be tested. By integrating surface runoff simulation 

with the analytical capabilities of GIS, the new index provides a framework for identifying the most vulnerable 

areas while also enabling the evaluation of the potential of proposed solutions in the context of climate adaptation. 

The outcome is a practical tool that supports municipal authorities in decision-making on BGI investments, thereby 

contributing to sustainable development and enhancing the resilience of urban systems. 

In developing the new index, we also drew on insights from existing approaches, among which the ITZI 

model holds a prominent position (Courty et al, 2017; Courty et al, 2018; Courty et al, 2019; Jamali et al, 2021). 

This model is designed for simulating surface runoff in urban environments and provides an important theoretical 

and practical framework for detailed assessment of interactions between rainfall events and surface characteristics. 

Its contribution lies particularly in its adaptability to different urban contexts, offering a valuable foundation for 

the development of our new index. In designing the index itself, the AHP statistical method was also employed, 

allowing for systematic weighting of criteria and their more objective integration into the final model. By 

combining surface runoff simulation with the ITZI model, advanced GIS analyses, and the AHP methodology, we 

developed an index that is both scientifically robust and practically applicable for assessing BGI. 
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Methods and data 

 

The Methods and Data section is structured into three main parts. The first part provides a description of the 

study area, which is the city of Žiar nad Hronom. The second part focuses on the input datasets utilized in the AHP 

analysis, including their sources and preprocessing procedures. The final part outlines the AHP methodology, 

covering the scoring of datasets, the determination of criteria weights, and the computation of the BGI index. 
 

Study area 

Žiar nad Hronom is a district town located in central Slovakia, within the Banská Bystrica Region (Figure 1). 

It lies in the Hron River valley at the foothills of the Štiavnica Mountains, positioned between the Štiavnica and 

Kremnica mountain ranges. This location provides favorable conditions for both industrial and agricultural 

development. The town is well-connected via a major road and rail corridor linking central Slovakia with 

Bratislava and Košice. The Hron River, the second-longest river in Slovakia, flows through the town. Covering an 

area of 39.1 km² at an elevation of 272 meters above sea level, Žiar nad Hronom has a population of 16,879 (Žiar 

Nad Hronom, 2025). 

 

 

 
Fig. 1: Location of the study area 

 

The study focuses on an urban area in the city center, encompassing a total of 3.64 km² (Figure 1). The city 

of Žiar nad Hronom represents a suitable and representative example of a Slovak town actively implementing 

measures to support climate change adaptation, particularly through rainwater retention and utilization. Within 

initiatives supported by the European Union, the city plans to implement water retention and green infrastructure 

measures in six selected school sites, labeled A through F, which include both primary and nursery school facilities 

(Table 1). These sites constitute key objects for assessing the effectiveness of BGI, and their spatial identification 

enables detailed analysis using GIS and the AHP methodology (Žiar Nad Hronom, 2024). 

 
Tab. 1: Overview of school sites and planned measures. 

Locality School Number of planned measures Area [m2] 

A Jilemnického (primary) 2 30,398 

B Rázusova (nursery) 1 4,636 

C Dr. Janského 8 (nursery) 1 4,698 

D Dr. Janského (primary) 4 24,005 

E M. R. Štefánika (primary) 5 16,968 

F Rudenkova (nursery) 1 2,787 
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The selection of Žiar nad Hronom as the study area is justified by several factors. First, it is a medium-sized 

town with a typical structure of Slovak urban areas, ensuring that the study results are relevant to other cities of a 

similar type. Second, the combination of existing urban development, water bodies, public spaces, and school 

campuses enables a comprehensive analysis of the potential of BGI measures for rainwater retention and 

management. Third, the city’s initiatives are well documented and readily available, enabling accurate 

identification of input data and their use in constructing the BGI index. These characteristics make Žiar nad 

Hronom an ideal environment for exploring methodologies for BGI assessment and overland flow simulation using 

GIS and AHP, with a focus on the specific locations of implemented measures. 

 

Input datasets  

The basis for constructing the new BGI index was the creation of map outputs representing the individual 

input datasets used in the analysis. The input datasets are presented in two separate sub-sections: the first focuses 

on the simulated water depth, which required a more detailed methodological description, while the second 

summarizes the remaining spatial datasets, including distance from risk areas, slope, land cover, and proximity to 

roads, which were derived using standard GIS operations. This division reflects differences in processing 

complexity across the datasets, while all contribute equally to the subsequent AHP-based evaluation and BGI index 

computation. 

 

Simulated water depth 

Simulated water depth is a key input raster for constructing the BGI index, as it integrates multiple 

environmental factors into a single indicator. Water accumulation in specific areas reflects the influence of terrain 

slope, land cover, and other physical characteristics, allowing identification of potentially suitable or high-risk 

areas (Harlis and Seo, 2024; Tokarčík and Hofierka, 2024). For the simulation of surface water flow, the two-

dimensional Itzï model was employed, implemented within the GRASS GIS environment on a Linux operating 

system. The model is based on a simplified form of the Saint-Venant equations (partial inertia approach) and works 

with input data such as a digital elevation model, surface roughness parameters like Manning’s coefficients, and 

rainfall data, enabling it to simulate surface water flow and flooding dynamics under varying environmental and 

precipitation conditions (Courty et al, 2018). Since the simulated water depth is only one of the factors in the AHP 

analysis, there is no scope here for a detailed mathematical or physical description of the model; more technical 

details, equations, and model validation are provided in the original publications (Courty et al, 2017; Courty et al, 

2019). The choice of the Itzï model was motivated by its suitability for urban environments, its efficiency in 

handling high-resolution data, and its relatively fast computation, which makes it well-suited for simulating various 

rainfall and land cover scenarios (Courty et al, 2017; Jamali et al, 2021). In this study, simulated water depth was 

used solely as an indicator; the objective was not to calibrate or validate the model itself, but to create a map of its 

spatial distribution for subsequent assessment of suitability for implementing BGI measures (Beden and Keskin, 

2020; Bruno et al 2022).  

The primary input for the simulation was a digital surface model (DSM) derived from airborne laser scanning 

(ALS) data, provided as a classified point cloud by the Geodesy, Cartography, and Cadastre Office of the Slovak 

Republic (Tokarčík and Hofierka, 2024). Although the main product of the ALS project was a digital terrain model 

(DTM), for our study, a surface model including above-ground features was required, so the DSM was interpolated 

from the classified point cloud at a 1 m spatial resolution using the “LAS Dataset to Raster” tool in ArcGIS Pro. 

Vegetation points were excluded to focus on the bare surface and built structures, while the average density of 

last-return points was approximately 22 points per square meter, ensuring sufficient detail for high-resolution 

modelling (Figure 2) (Tokarčik et al, 2024). 

For the distributed definition of parameters in the Itzï model, a detailed land cover map is required. To create 

this map, multiple freely available datasets were used. The approach combined LiDAR data, orthophoto imagery, 

and vector data from OpenStreetMap (OSM) to classify and delineate major land cover types (Tokarčik et al, 

2024). 

This integration enabled an accurate representation of natural and anthropogenic features, providing the 

spatial information needed to assign surface roughness and infiltration parameters in the Itzï water flow 

simulations. Surface hydraulic properties were represented using a map of Manning's roughness coefficients and 

infiltration parameters assigned to different land cover types (Figure 2).  
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Fig. 2: Primary input maps for the Itzï model 

 

The specific values for Manning’s coefficients and infiltration rates were adopted from previous studies 

addressing surface water flow simulations in urban and semi-urban environments (Hofierka and Knutová, 2015; 

Tokarčík and Hofierka, 2024a; Tokarčík and Hofierka, 2024b; Vojtek and Vojteková, 2016). Precipitation was 

defined as a single event with an intensity of 30 mm and a duration of 20 minutes. For the overall analysis, it was 

necessary to input a single general, realistic rainfall value representative of rainfall events that commonly occur in 

the study area (Pecho et al, 2025). The excess rainfall rate for each land cover type was calculated as the 

precipitation amount minus the infiltration rate, and the values of Manning’s roughness coefficient and excess 

rainfall rate are presented in Table 2. 

 
Tab. 2: The values of the Manning’s roughness coefficient and rainfall excess rate for land cover classes. 

Other spatial datasets 

Land cover Manning´s roughness coefficient Rainfall excess rate [mm/hr.] 

buildings 0.50 30 

built-up 0.04 20 

grass 0.10 10 

trees and shrubs 0.20 5 

water 0.05 30 

 

Another dataset used was the distance from hazardous areas. This dataset was derived from the simulated 

water depth raster. In the first step, areas with a simulated water depth of 5 cm or more were selected using the 

Reclassify tool. These areas were considered hazardous, or more precisely, locations with the highest potential for 

BGI implementation. The resulting raster was then converted into a vector polygon layer using the Raster to 

Polygon tool. To generate zones representing distances from these areas, the Multiple Ring Buffer tool was applied. 

This procedure resulted in a vector layer that represents the distance gradient from inundated areas. From a 

methodological perspective, this approach is important because implementing BGI measures is not always feasible 

directly in locations with the maximum inundation depth – such areas may be occupied by other land-use elements 

or infrastructure. Therefore, it is essential to also consider their surroundings, as measures implemented in the 

vicinity of such areas can contribute to reducing water depth or slowing down water accumulation. 

Another dataset used was the terrain and roof slope. In several studies, slope is understood as a factor 

influencing water accumulation, with low-slope areas being identified as hazardous due to surface runoff 

concentration (Harlis and Seo, 2024; Kaur and Gupta, 2022). However, this aspect is already captured in our 

analysis by the simulated water depth. Therefore, in our case, slope is interpreted differently – as a factor 

determining the suitability of BGI implementation. Areas with steep slopes are considered unsuitable for placing 

measures, as conditions for water retention or stable installation of vegetative elements are limited. The input layer 

was a DSM without vegetation, with a 1 m spatial resolution, identical to that used in the surface water flow 

simulation. From this DSM, a slope raster was derived using the Slope tool in ArcGIS Pro. This raster was then 

used to identify areas with unsuitable slope conditions. The analysis was applied not only to terrain but also to 

buildings. For buildings, the average roof slope was derived from the DSM, and based on available literature, roofs 
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were classified as suitable or unsuitable for green roof implementation depending on their slope (Grunwald et al, 

2017). 

The land cover layer was another key input for assessing the suitability of BGI implementation. In many 

studies, land cover is primarily interpreted as a factor influencing water accumulation, with built-up areas, for 

example, showing very limited retention potential (Harlis and Seo, 2024; Kapetas and Fenner, 2020). However, 

this aspect is already accounted for in our analysis through the simulated water depth raster. Therefore, in our case, 

land cover is considered from a different perspective – as a factor determining the feasibility of BGI measures. 

Different land cover types represent varying levels of suitability for implementing measures. For instance, green 

spaces or areas with trees and shrubs offer greater potential for establishing measures compared to built-up areas, 

where opportunities for new interventions are highly restricted. The land cover layer consisted of the following 

categories: green spaces, trees and shrubs, buildings, built-up areas, and water. These categories were then assessed 

in terms of their suitability for BGI implementation. 

The last input layer for assessing the suitability of BGI implementation was the distance from roads layer. 

Accessibility and logistics are key factors for the effective implementation of BGI measures. Therefore, the 

suitability assessment considers distance from road infrastructure: locations closer to roads are more suitable for 

implementation, while roads themselves are considered the least suitable locations within the layer. The road layer 

was obtained from OSM, and the Multiple Ring Buffer tool was applied to create a distance-based categorization. 

This resulted in a layer representing the accessibility gradient for BGI implementation – from the lowest suitability 

directly on roads to the highest suitability in the immediate vicinity of roads. 

 

Factor scoring and BGI index calculation 

All previously described dataset layers were reclassified onto a uniform scoring scale from 1 to 5 to calculate 

the suitability index for BGI implementation, where 5 represents the most suitable and most needed locations for 

BGI measures (Table 3). This approach allows for a consistent comparison and integration of individual factors 

into a single comprehensive index, considering not only the physical characteristics of the area (simulated water 

depth, slope, land cover) but also logistical and practical implementation factors (distance from roads, distance 

from hazardous areas). The scoring within this scale was defined according to rules specific to each dataset. 

 
Tab. 3: Ranking scores assigned to the BGI index factors and their classified value ranges. 

 

Simulated water depth, ranging from 0 to 57 cm, was evaluated according to the intervals in Table 3, with the 

highest score of 5 assigned to locations with depths above 10 cm, while lower depths received lower scores. For 

the distance from hazardous areas, locations with water depth of 5 cm or more were selected, and distances were 

classified according to Table 3; the highest score (5) was assigned to sites less than 11 m from hazardous areas. 

Slope was considered as a combination of terrain and roof slopes; low terrain or roof slopes (e.g., <2.1° for terrain, 

<5.1° for roofs) were assigned the highest score of 5, while steep slopes received lower scores. The land cover 

layer assigned the highest score of 5 to green spaces, followed by trees and shrubs, then buildings with a score of 

3, as they are interesting from the perspective of green roofs, built-up areas, and the lowest score of 1 to water 

areas. For distance from roads, locations within 30 m of a road were assigned the highest score of 5, while sites 

more than 300 m away received a score of 1. This scoring scheme enabled a consistent evaluation of all factors 

and their subsequent integration into the BGI index. An overview of all reclassified maps, including the intervals 

and assigned scores for each factor, is shown in Figure 3. 

Ranking score 1 2 3 4 5 

Simulated water 

depth [cm] 
0.0 0.1 – 2.0 2.1 – 5.0 5.1 – 10.0 >10.0 

Proximity to 

hazardous areas [m] 
>100 100 – 51 50 – 21 20 – 11 <11 

Terrain slope [°] >15.0 15.0 – 10.1 10.0 – 5.1 5.0 – 2.1 <2.1 

Roof slope [°] >15.0 - 15.0 – 5.1 - <5.1 

Land cover water built-up areas buildings 
trees and 

shrubs 
green spaces 

Proximity to roads [m] >300 300 - 201 200 - 101 100 - 31 <31 
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Fig. 3: Reclassified input factor maps used for the BGI index computation 

 

For assessing the suitability of BGI implementation, it is necessary to assign a weight to each factor reflecting 

its relative importance. The AHP was applied for this purpose, as it provides a systematic and consistent method 

for determining the weights of individual criteria (Dee Fsm Russo and Camanho, 2015). A pairwise comparison 

matrix was constructed for each pair of factors, with their relative importance assessed using Saaty’s 9-point scale 

(Harlis and Seo, 2024; Kapetas and Fenner, 2020). The weights were calculated in several steps. First, the sum of 

each column in the matrix was determined. Next, the matrix was normalized by dividing each element of a column 

by the sum of that column. Finally, the average of each row in the normalized matrix was computed, representing 

the weight of the corresponding factor. The resulting weights (Table 4) were then applied in the weighted 

summation of the factors to create the final BGI index. The consistency of the pairwise matrix was verified using 

the Consistency Index (CI) and Consistency Ratio (CR), with CI = 0.02 and CR = 0.018. A CR value below 0.1 is 

generally considered an indicator of good consistency, confirming that the weights were correctly assigned and 

the resulting index is reliable.    

 
Tab. 4: Weights assigned to the individual factors used in the BGI index calculation 

Criterion Weights 

Simulated water depth 0.501 

Proximity to hazardous areas 0.247 

Slope 0.125 

Land cover 0.095 

Proximity to roads 0.032 

SUM 1.000 
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The weights for the individual factors in the BGI index were assigned based on their relative importance in 

identifying locations suitable for BGI implementation. Simulated water depth has the highest weight (0.501) 

because it integrates multiple key environmental and hydrological parameters, including terrain slope, surface 

roughness, land cover type, and other factors influencing water accumulation and potential flood risk. This factor 

serves as the primary indicator of potential flood impact, which is why it carries a dominant weight in the index. 

Proximity to hazardous areas was assigned a weight of 0.247, as placing measures near potential risk areas can 

significantly increase the effectiveness of interventions, even if the location itself is not directly inundated. This 

factor reflects both practical priority and the intervention's effectiveness. The terrain slope has a weight of 0.125, 

based on the feasibility of implementing measures. Steep slopes may be technically challenging or less effective 

to implement, while gentle slopes make it easier to realize interventions. Land cover was assigned a weight of 

0.095, as different types of cover influence the practical suitability of implementing measures. This factor allows 

consideration of where interventions are technically and logistically easiest to implement. Proximity to roads has 

the lowest weight (0.032), as accessibility is a supplementary factor – closer roads facilitate logistical 

implementation, but roads themselves are not suitable for BGI measures. These weights reflect a combination of 

environmental and practical considerations, enabling reliable identification of locations with the highest potential 

for BGI implementation. Finally, the BGI index was calculated as a weighted sum of all factors, with each factor 

multiplied by its assigned weight. The calculation was performed in ArcGIS Pro using the Raster Calculator, 

following the formula: BGI index = (Simulated water depth × 0.501) + (Proximity to hazardous areas × 0.247) + 

(Slope × 0.125) + (Land cover × 0.095) + (Proximity to roads × 0.032). 

In addition to the established BGI index, three alternative weighting scenarios were developed to assess the 

model's sensitivity to changes in the relative importance of individual criteria. These scenarios – hydrological, 

urban, and environmental – were designed to reflect different management perspectives and spatial conditions of 

the study area. The hydrological scenario increased the weight of simulated water depth by 20%, with the 

remaining criteria reduced proportionally. This setting represents situations where local authorities prioritize flood 

mitigation and surface runoff reduction. The urban scenario placed slightly greater emphasis on proximity to roads 

and on land cover (imperviousness), reflecting the priorities of densely built-up areas, where accessibility and 

urban infrastructure play a key role. Finally, the environmental scenario strengthened the influence of slope and 

land cover, capturing terrain stability and ecological conditions that affect vegetation growth and natural water 

infiltration. The adjusted weights for each scenario are summarized in Table 5 and served as the basis for 

recalculating the BGI index layers under varying decision-making conditions. These alternative settings enabled 

the subsequent evaluation of how changes in the weighting scheme influence the spatial distribution and range of 

BGI values, which is presented in the Results section. 

 
Tab. 5: Weighting schemes of the BGI index used for the sensitivity analysis 

Criterion Hydrological Urban Environmental 

Simulated water depth 0.601 0.401 0.401 

Proximity to hazardous areas 0.222 0.200 0.200 

Slope 0.100 0.110 0.200 

Land cover 0.060 0.180 0.170 

Proximity to roads 0.017 0.109 0.029 

 

Results 

 

Evaluation of the BGI Index and scenario analysis 

The resulting BGI index map provides an overview of areas with varying suitability for implementing BGI 

measures (Figure 4). Index values range from 1.19 to 4.99. Areas highlighted in red indicate the highest potential, 

where implementing measures is most effective and necessary. These locations represent priority sites for planning 

and placing BGI interventions. Conversely, areas marked in green have the lowest risk, for which implementing 

measures would yield relatively lower benefits. This visualization enables easy identification of priorities and 

supports strategic decision-making to improve the environmental and climatic conditions of the studied area. The 

BGI index was derived using a weighted overlay of multiple spatial criteria, including hydrological, topographical, 

and infrastructural factors, which together capture both environmental risks and opportunities for implementing 

blue-green measures. 

The analysis of the raster BGI index showed that the average index value across the study area is 2.58. 

Extreme values extracted from the raster dataset indicate that areas with the highest risk (index value > 3.5), 

representing the greatest potential for effective BGI implementation, cover approximately 0.13 km², or 3.6 % of 

the total area. Conversely, locations with the lowest risk (index value < 2), where implementing measures would 

be less effective, cover approximately 0.29 km², or 8% of the area. The remaining portion of the area falls within 

the mid-range of values, representing locations with average suitability for BGI measures. 
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Spatially, the highest index values are concentrated in areas where surface water naturally accumulates and 

where physical conditions are favorable for implementing blue-green measures. These locations are primarily 

green or semi-permeable surfaces with moderate slopes that enable effective water retention and infiltration. Many 

of them are situated near zones identified as flood-prone or adjacent to drainage pathways, confirming their 

functional importance in mitigating runoff impacts and improving local hydrological balance. In contrast, lower 

index values are typical of elevated or densely built-up areas with limited infiltration potential. This spatial 

distribution reflects the expected relationships among hydrological risk, terrain morphology, and land-use 

structure. These baseline results serve as a reference for evaluating alternative weighting scenarios and testing the 

model’s robustness in subsequent analyses. 

 

 
Fig. 4: BGI index map 

 

To further evaluate the robustness of the model and the influence of individual criteria, the BGI index was 

recalculated under three alternative weighting scenarios – hydrological, urban, and environmental – as described 

in the methodology section. The recalculated BGI index maps (Figure 5) show that the overall spatial pattern of 

suitability remains generally consistent across all scenarios, indicating that the model is relatively stable and 

robust. However, local differences are evident, particularly in areas where specific factors gained higher 

importance.  

In the hydrological scenario, areas along drainage lines, local depressions, and flood-prone zones had higher 

index values due to the increased weight of the simulated water-depth factor. This prioritization largely overlaps 

with the reference BGI index, as hydrological risk already had a dominant influence in the base model. The highest-

priority areas are thus concentrated in zones where surface water naturally accumulates, confirming their 

importance for enhancing local retention and mitigating runoff impacts. In the urban scenario, increasing the 

weights of land cover and proximity to roads shifted the index distribution toward densely built-up areas and 

transport corridors. This reflects locations where green spaces are limited, but their establishment would provide 

high multifunctional benefits and be easily accessible for implementation. Consequently, priority zones are more 

clustered within the urban core and along main roads, highlighting the strong effect of the built environment on 

the model output. The environmental scenario emphasized land cover and slope, with the latter favoring areas of 

lower gradient that are more stable and technically suitable for BGI construction. As a result, this scenario 

prioritizes open, less built-up zones, where gentle terrain and vegetated surfaces support effective infiltration and 

ecosystem-based measures. Compared to the reference model, priority areas slightly expanded toward suburban 

and greenfield locations outside the densely urbanized center.  
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Fig. 5: BGI index maps for alternative scenarios 

 

To complement the spatial assessment of scenario-based results, a quantitative evaluation was conducted to 

further examine the stability and internal consistency of the BGI index. The definition of additional weighting 

scenarios proved highly effective not only for identifying alternative priority settings applicable across different 

environments, but also for testing the model's robustness and reliability. If minor adjustments in the weighting of 

criteria had led to significant changes in the identification of high-priority areas, it would indicate low index 

stability. Therefore, this part of the analysis focuses on the statistical comparison of raster outputs derived from 

the individual scenarios and the reference model. Methods such as Pearson's correlation, maximum deviation, 

mean deviation, and the percentage of BGI index values above 3.5 were applied to quantify the degree of similarity 

between the results and to assess how the spatial distribution of priority areas changed under different weighting 

conditions. This quantitative approach allows a more objective verification of the model’s sensitivity to changes 

in the weighting of individual criteria. An overview of the results for these indicators is presented in Table 6, which 

summarizes the statistical indicator values for the evaluated test rasters.  

 
Tab. 6: Statistical evaluation of the alternative BGI index scenarios 

Scenario Pearson correlation Maximum deviation Mean deviation 
BGI index 

>3.5 [%] 

Reference 1.00 - - 3.6 

Hydrological 0.98 0.26 0.22 3.3 

Urban 0.92 0.60 0.22 5.5 

Environmental 0.94 0.59 0.23 7.6 

 

The first step involved assessing the linear relationship between the pixel values of the reference BGI index 

and each scenario. The Pearson correlation coefficient (r) was calculated to quantify the strength of this 

relationship, where values close to 1 indicate a strong positive correlation and thus a high level of consistency 

between maps. As shown in Table 6, the correlation coefficients between the reference and alternative scenarios 

ranged from 0.92 to 0.98, confirming a very strong linear relationship. This suggests that changes in weighting 

have only a minor influence on the overall spatial distribution of the BGI index. The hydrological scenario (r = 

0.98) shows the highest correlation with the reference, indicating that the index pattern remained almost identical, 

as hydrological factors already played a dominant role in the base model. The urban (r = 0.92) and environmental 

(r = 0.94) scenarios show slightly lower correlations, reflecting localized changes driven by the increased 

importance of land cover, proximity to roads, and slope. 

To complement the correlation analysis, mean and maximum deviation were used to express the magnitude 

of differences between the reference and each scenario on a per-pixel basis. The mean deviation values around 

0.22–0.23 indicate that most pixels differ by less than one-fifth of the index range, while the higher maximum 

deviations (up to 0.6) highlight isolated areas where the weighting adjustments caused more significant local shifts. 

Finally, the share of pixels with a BGI index > 3.5 represents the proportion of high-priority areas under each 

scenario. These values range from 3.3% to 7.6%, indicating that although the total extent of priority zones 

fluctuates slightly with the weighting scheme, the differences remain moderate. The relatively stable correlation 

and limited deviations together confirm the robustness and internal consistency of the BGI index across all tested 

weighting scenarios.    
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Application to selected school sites 

The main advantage of the developed BGI index lies not only in its ability to comprehensively assess the 

entire study area in terms of the effectiveness of planned measures, but also in its capacity to focus on smaller 

localities and analyze them in greater detail. This approach enables the identification of specific sites with the 

highest priority for implementing BGI measures. In this study, school areas were selected as the focus locations, 

as the city intends to implement nature-based measures within these premises as part of an ongoing adaptation 

project. Another strength of the index is its universality – it can be applied to various types of urban areas and 

serves as a decision-support tool for evaluating the suitability and efficiency of BGI implementation. The spatial 

distribution of BGI index values within the selected school sites is shown in Figure 6, illustrating the variability 

of local conditions and highlighting zones with higher potential for effective measures. 

 

 
Fig. 6: Spatial distribution of BGI index values within selected school sites 

 

To identify the most suitable locations among the selected sites, school areas were evaluated based on the 

mean and maximum BGI index values. The mean index value represents the overall suitability of each site, while 

the maximum value highlights localized hotspots with the highest potential for intervention. As shown in Table 7, 

the Dr. Janského 8 School achieved the highest mean BGI index (2.87) with a maximum value of 4.96 and was 

therefore classified as a high-priority site. Similarly, the M. R. Štefánika School (mean 2.81, maximum 4.99) also 

falls into the high-priority category. Sites such as Rudenkova, Jilemnického, and Dr. Janského show moderate 

mean values (2.66–2.67) and maximum values ranging from 3.68 to 4.47, placing them in the moderate-priority 

group. Finally, the Rázusova Primary School, with a mean index of 2.31 and a maximum of 3.23, represents a 

low-priority location for BGI implementation. These results confirm that the index enables both a general ranking 

of sites and a more detailed identification of internal priority zones, providing a solid foundation for spatial 

planning and targeted implementation of measures. 

 
Tab. 7: Ranking of school sites based on BGI index values 

Rank Location School 
Mean BGI 

index 
Maximum BGI index Priority level 

1. C Dr. Janského 8 2.87 4.96 High 

2. E M. R. Štefánika 2.81 4.99 High 

3. F Rudenkova  2.67 3.68 Moderate 

4. A Jilemnického 2.66 4.47 Moderate 

5. D Dr. Janského  2.59 4.47 Moderate 

6. B Rázusova  2.31 3.23 Low 
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The proposed index demonstrates both diagnostic and decision-making value, as it can confirm the suitability 

of planned measures while also highlighting new potential risk areas that might otherwise be overlooked. For 

example, the area of the Andreja Kmeťa nursery school, located near zones with elevated simulated water depth, 

was recognized as highly suitable for implementing BGI measures. Even though this site is not part of the city’s 

current adaptation plan, its exposure in areas with higher simulated water depth makes it a key candidate for future 

BGI implementation. This identification illustrates the practical applicability of the BGI index as a spatial decision-

support tool, capable of pinpointing areas where BGI measures could effectively reduce flood risk and enhance 

local resilience. The simulated water depth and BGI index for this school site are shown in Figure 7. 

 

 
Fig. 7: BGI index and simulated water depth around the Andreja Kmeťa nursery school  

 

Based on the calculated BGI index values, the area of the Andreja Kmeťa nursery school achieved a mean 

index of 2.73 and a maximum value of 4.55, ranking third among all evaluated school sites. These values clearly 

classify the location as a high-priority area for future BGI implementation. Compared to other assessed sites, such 

as the Rázusova Primary School, which exhibited a mean value of 2.31 and was classified as low-priority, this site 

demonstrates a significantly higher potential for the effective integration of nature-based solutions. The elevated 

BGI index values are primarily associated with local topographic and hydrological conditions, including the 

accumulation of surface runoff and reduced infiltration capacity in the surrounding area. Furthermore, simulated 

flood depth data confirm a heightened flood risk in the immediate vicinity of the site, reinforcing the need for 

targeted adaptation measures. The identification of this location thus underscores the robustness and decision-

making potential of the developed BGI index, which can effectively reveal previously unconsidered yet 

strategically important areas for enhancing urban resilience and stormwater management. 

Discussion 

The results of this study confirm the analytical and practical potential of the developed BGI index as a 

decision-support tool for identifying priority areas for implementing BGI measures. The resulting BGI index map 

proved to be a highly efficient spatial output, allowing for a clear and immediate visualization of critical and high-

priority zones. This map integrates multiple environmental, hydrological, and urban factors into a single composite 

indicator, providing a clear spatial representation of areas where BGI implementation would have the highest 

impact on urban resilience and environmental quality (Grunwald et al, 2017; Hamann et al, 2020; Tokarčík et al, 

2024). Such spatially explicit outputs enhance the interpretability of results and support their direct application in 

urban planning and climate adaptation strategies (Kapetas and Fenner, 2020; Ncube and Arthur, 2021). 

A major contribution of this study lies in the use of GIS-based spatial modeling and analysis, which enabled 

the integration of heterogeneous spatial datasets—such as topography, land cover, and hydrological simulations—

into a unified analytical framework (Grunwald et al, 2017; Harlis and Seo, 2024; Kaur and Gupta, 2022). The use 

of raster-based continuous data ensured sufficient spatial resolution for both citywide assessment and local-scale 

analyses. This demonstrates the flexibility of geoinformatics methods for evaluating BGI potential and supports 

the growing trend of using GIS as a core analytical tool in sustainable urban planning (Grunwald et al, 2017; 

Voskamp and Van De Ven, 2014). The BGI index thus functions not only as an analytical model but also as a 

practical GIS-based tool capable of transforming complex spatial data into actionable information for decision-

makers. 

The robustness of the index was confirmed by recalculating the reference BGI index under three alternative 

weighting scenarios – hydrological, urban, and environmental. Despite moderate adjustments in the relative 



Ondrej TOKARČÍK et al. / Acta Montanistica Slovaca, Volume 30 (2025), Number 3, 813-826 
 

825 

importance of individual criteria, the overall spatial pattern of high-priority areas remained largely consistent. The 

strong Pearson correlation coefficients (r = 0.92–0.98) between the reference and alternative scenarios indicate a 

high level of agreement, suggesting that the index is not overly sensitive to minor changes in parameterization [8]. 

This stability supports its applicability across various urban contexts and confirms that the developed approach 

yields reliable, transferable results. 

From a methodological perspective, incorporating simulated water depth as a hydrological factor represents 

a key innovation compared to approaches relying solely on static terrain parameters or potential drainage density 

(Harlis and Seo, 2024; Kaur and Gupta, 2022 ). This method provides a more realistic depiction of runoff 

accumulation and improves the diagnostic capacity of the BGI index. Nevertheless, the lack of direct observational 

data for validation remains a limitation, as detailed hydrological monitoring is rarely available in medium-sized 

cities. Therefore, simulated water depth served as a practical proxy for flood susceptibility, emphasizing the need 

for cities to invest in systematic spatial data collection and monitoring systems (Tokarčík and Hofierka, 2024a; 

Vojtek and Vojteková, 2016). 

Finally, the findings of this study open new directions for future research and model development. With the 

availability of more detailed spatial and hydrological data, the BGI index could be extended to include process-

based hydrological modeling tools such as ITZI or other open-source runoff simulation models (Courty et al, 2017; 

Jamali et al, 2021; Tokarčík and Hofierka, 2024a; Vojtek and Vojteková, 2016). This would allow researchers and 

planners not only to identify priority areas but also to test the potential impact of proposed measures on runoff 

dynamics and water retention. Such integration would transform the index from a static diagnostic tool into a 

predictive and adaptive model, supporting iterative planning and long-term monitoring of the effects of BGI 

interventions (Hamann et al, 2020; Hofierka and Knutová, 2015). 

 

Conclusion 

 

The developed BGI index demonstrates strong analytical and practical potential as a spatial decision-support 

tool for identifying and prioritizing sites for blue-green infrastructure implementation. By combining GIS analyses, 

AHP-based weighting, and hydrological simulation of surface runoff, the index integrates multiple environmental 

and infrastructural parameters into a single interpretable output. The results confirm that simulated water depth is 

an effective hydrological indicator for identifying flood-prone areas, and the index's overall robustness was 

validated by high correlations across weighting scenarios. The study highlights the crucial role of spatial data and 

GIS modeling in supporting climate adaptation planning and emphasizes the need for municipalities to invest in 

systematic spatial data collection and monitoring. Furthermore, the proposed framework is easily transferable to 

other urban contexts, particularly where data availability is limited. Future research should focus on extending the 

model through process-based simulations, such as integrating ITZI or similar tools, to dynamically evaluate the 

effects of proposed BGI measures on runoff reduction and resilience enhancement. Overall, the index provides an 

efficient methodological foundation for evidence-based decision-making in sustainable urban water management. 
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