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Abstract 

The transition to sustainable development and the movement towards 

carbon neutrality pose new challenges for the production of natural 

gas, which is considered both a "transitional" and a "stable" fuel. In 

the Arctic region, the formation of hydrates and ice plugs in gas col-

lection and treatment systems is a significant unresolved problem. 

Implementing measures to prevent this can have a substantial impact 

on gas production operating costs. The aim of this work is to develop 

a prototype of an automated analytics system that detects pressure 

anomalies early, potentially signaling the onset of hydrate formation 

in the gas collection system. To solve this problem, the methods of 

searching for anomalies and averaging data (sliding window, moving 

average, threshold value) were used. The article highlights the short-

comings of existing approaches, which are associated with insuffi-

cient accuracy of modeling due to the complexity and multifactorial 

nature of hydrate formation, increased measurement error, imperfec-

tion of devices, and communication channels of sensors with the con-

trol panel. The study subject is a gas collection system. In the process 

of implementing the tasks, a decision-making algorithm was devel-

oped, and a mathematical model was developed at the first level of 

this algorithm, which is adaptive, flexible, and easily scalable for 

working with other types of time series of parameters (flow rate, tem-

perature), as well as various types of gas collection systems. A math-

ematical description of the developed model was presented. The pos-

sibility of scaling and developing the idea was demonstrated, along 

with the feasibility and possibility of its implementation. The results 

of experimental verification are also given.   
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Introduction 

 

Natural gas plays a significant role in the global energy sector due to its versatility of application – as an 

energy source (gas-fired power plants have high efficiency and quick start-up, which makes them ideal for covering 

peak loads and balancing power systems with a high share of renewable energy), as a mass source of heat (due to 

its high environmental friendliness – gas contains virtually no sulfur and particulate matter), as a raw material for 

the production of fertilizers and plastics, as a source of transport fuel alternative to gasoline and diesel fuel 

(Cherevko et al., 2024). Therefore, achieving the Sustainable Development Goals related to carbon neutrality and 

climate stability, coupled with ensuring universal access to cheap energy, inevitably preserves the role of natural 

gas as the main "transitional" fuel in the 21st century (Lukyanenok et al., 2023; Zonova et al., 2024). Therefore, 

investments in natural gas production have also increased by 8-11% annually over the past 2 decades (Gerasimova, 

2024). At the same time, the growth of global gas consumption is obvious (Fig. 1), and existing forecasts indicate 

growth prospects by 2050 by 1.10-1.25 times, depending on the "NetZero" and "Rational technological choice" 

scenarios (Energy Insights, 2021). 

 

 
Fig. 1. World dynamics of natural gas production, bcm (World Energy & Climate Statistics, 2024) 

 

The growth of global consumption of natural gas raises the question of developing reserves located in the 

Arctic and adjacent zones, with a proven volume of about 50 trillion cubic meters (Fig. 2). 

 
 

Fig. 2. World distribution of proven natural gas reserves, trillion cubic meters (Our World in Data, 2023) 

 

Overall, the Arctic contains 13% of the world's probable oil reserves and 30% of natural gas, with 80% of the 

total hydrocarbons located offshore (Shutko et al., 2024). Given that the average annual temperature in the Arctic 

is -12 0C, greater attention will be paid to maintaining the operation of gas production equipment in low-

temperature conditions. 
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In particular, the relevance of research on counteracting the process of hydrate formation in natural gas pro-

duction systems is increasing, which includes two directions: preventing the formation of hydrates and eliminating 

those already formed (Makwashi et al., 2021). 

Natural gas hydrates are solid crystalline compounds formed under certain thermobaric conditions from water 

and low molecular weight gas. The thermodynamics and kinetics of the hydrate formation process have been 

studied quite well (Rasoolzadeh et al., 2025). In general, the hydrate formation process consists of the appearance 

of the first signs of crystallization and the stage of sorption growth of the crystal around the nucleus. In Arctic 

conditions, the formation of hydrates and ice plugs in gas collection and treatment systems is one of the most 

significant and unresolved problems (Bogoyavlensky et al., 2019; Giustiniani et al., 2013; Marín-Moreno et al., 

2016). Elimination of this complication is difficult, and the costs of measures to prevent it constitute a significant 

part of the cost of gas production (Sa et al., 2019). 

Mathematical models describing the properties of hydrates, as well as the thermodynamics of their formation 

and growth, are quite complex and include many factors and conditions (Shostak, 2022; Musakaev et al., 2024). 

The processes occurring in the collection and preparation system, including hydrate formation processes, are 

dynamic, and it can be added that the parameters for which operational information is available are extremely 

limited in field conditions and are reduced to monitoring the gas pressure at the well outlet, temperature, and gas 

flow at several well points along process communications of tens of kilometers. Wind speed in specific areas, wear 

of thermal insulation, the amount of deposits inside pipelines, and many other parameters remain unknown (Save-

nok et al., 2024). 

There is measurement error, imperfection of devices, and communication channels of sensors with the control 

panel. Obviously, the combination of the described factors results in extremely limited capabilities for collecting 

data on the system as a whole, leading to a significant data error. In addition to the processes of hydrate formation 

itself in gas collection equipment, at the later stages of development, processes of ice formation occur directly 

(Xiao et al., 2023; Shahbazi et al., 2009), which introduces additional uncertainty when trying to model the pro-

cesses occurring in the system. In this regard, it is extremely difficult to prevent the complication in question by 

means of forecasting based on physicochemical modeling of processes. 

The issue of applicability and accuracy of predictive models based on physicochemical modeling of the hy-

drate formation process is raised in a number of studies (Karaköse et al., 2024; Niu, 2024). The authors of these 

works conclude that such modeling is unacceptable for solving the problem of operational hydrate detection in 

field conditions (Patri et al., 2014). 

After reviewing the most common approaches, it is concluded that to date, no universal method has been 

found for predicting or early detection of hydrate formation in a pipeline that would provide very high accuracy 

with minimal costs for processing and obtaining information [Volovetskyi et al., 2023; Tang et al., 2024)  

At the same time, systems working with empirical data in real time are being implemented at Arctic fields. 

Currently, a system for autonomous dosing of methanol is being successfully tested. The consumption of methanol 

depends on gas production indicators, which essentially constitutes an automated system for the early detection of 

changes in gas production parameters and an autonomous response to these changes (Prakhova et al., 2016). 

The work on detection and elimination of gas hydrates and ice plugs is one of the key tasks for the process 

personnel of the facilities. This operation involves personnel analyzing a large array of data from devices installed 

along the entire well production collection system to make informed decisions. Due to the complexity and 

dynamism of the system, analytical work focuses on the early detection of anomalies in pressure and temperature 

trends, as well as the interpretation of detected deviations. Considering that all data is digital information, the idea 

of creating a model for automated analysis of the state of the gas collection system seems logical. The use of such 

an approach will allow moving away from unsuccessful attempts to create predictive physical and chemical models 

that are extremely demanding of the completeness and accuracy of information about the system. Instead, it is 

proposed to build a model that will work with statistical data, limited but sufficient for early detection of 

complications.  

Considering this, the research objective is to optimize the data processing processes of field gas collection 

systems by automating the technological process at field "X". 

Accordingly, the research object, the tasks that need to be solved include the following: 

• develop algorithmic rules for the model's operation in the conditions of field data collection, based on real 

analytics. 

• develop a mathematical model capable of performing operations for the early detection of data anomalies at 

the level of gas well operation. 

The prototype of the mathematical model will demonstrate the fundamental possibility of implementing a 

full-fledged model of automated analytics of the entire gas collection system. 
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Formalization of the analytical process 

 

To solve the first problem, it was necessary to determine which key actions of production personnel can be 

formalized and reduced to a strict algorithm. In solving this problem, several methods were employed, including 

observing personnel actions, synthesizing key aspects into a single system, abstracting from secondary tasks, 

classifying information, and using induction and deduction to establish logical connections in the final formal 

algorithm. In the course of the work, it became clear that data analytics is performed at different levels of the gas 

collection system. The first level of analysis is the level of gas well performance indicators, providing the bulk of 

the initial information. In the process, personnel identify abnormal changes in the time series of pressure and gas 

flow. By the nature of these changes, several causes of anomalies can be determined, including hydrate formation. 

If information at the well level is insufficient, a transition to a higher level of analysis is made – the level of a well 

cluster. At this level, a comparison of the parameters of gas wells located within the same cluster is performed. If 

the analysis at the well cluster level also does not allow the exact cause of the anomaly to be determined, the 

transition to two higher levels is performed – the gas collection manifold and the gas collection system. Ultimately, 

the exact cause of the anomaly will be determined at one of the levels. 

The analytics described above is formalized and summarized in a single decision-making algorithm consisting 

of 4 levels: Level 1 – "gas well ", Level 2 – "cluster of well ", Level 3 – "gas collection manifold", Level 4 – "gas 

collection system" (Fig. 3). These levels reflect the hierarchy of the main operational blocks and all possible signals 

about the causes and prerequisites of anomalies (yellow and gray blocks). 

 

 
Fig. 3. Scheme of the solution algorithm and hierarchy of analysis levels 

 

Development of a prototype of an automated analytics model 

 

The implementation of the solution algorithm's steps must begin with developing a basic prototype – a starting 

mathematical model. Such a model could serve as a starting point for implementing a complex system and 

demonstrating the fundamental feasibility of a full-fledged project. 

The first stage of well-level analysis is searching for anomalies in pressure and flow rate time series. In field 

conditions, this analysis is performed by visually viewing the relevant trends and finding sharp deviations. To 

create a mathematical description of this process, it is necessary to develop a model based on time series anomaly 

detection methods. In the process of developing the model, the difficulties associated with the dynamics of the gas 

gathering system were taken into account. The technological operating mode is constantly changing under the 

influence of seasonality, daily temperature differences, changes in system parameters as specified by the 
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dispatcher, and other factors. In this regard, it was decided to reduce some of the data to relative values. It was 

decided to use the "sliding window" method to perform real-time data analysis. The threshold method was used to 

identify critical changes. In addition, the input data contains a high level of error, which leads to significant noise 

in the time series. To eliminate this problem, it is proposed to use the data smoothing method – "moving average", 

thereby creating a hybrid model for searching for anomalies in real time on noisy data in a dynamic system. 

The model is designed for the analysis of pressure time series, but is equally applicable to the analysis of 

other time series coming to the control panel of the gas collection system. The model contains the following 

parameters: 

Let's display some parameters of the model on the trend of an arbitrary pressure time series (Fig. 4): 

• 𝑃𝑐𝑢𝑟   – measured pressure at the current time 𝑡наст . 

• 𝑇hist   – length of the historical interval (number of points used for averaging – empirically set). 

• 𝑇buf  – buffer interval between historical and current data (empirically set). 

• 𝐾crit  – critical anomaly threshold (empirically set). 

• 𝑃𝑎𝑣(𝑡) – average pressure over the historical interval. 

• 𝐾𝑥(𝑡)  – anomaly coefficient determining the deviation of the current pressure from the norm. 

• L – length of the verification interval (number of points analyzed after exceeding the threshold – empi-

rically set). 

• D – number of 𝐾𝑥(𝑡) values exceeding 𝐾crit  in interval L, at which the situation is classified as anoma-

lous (empirically set). 

 

 
Fig. 4. Arbitrary time series of pressures with some model parameters indicated 

 

Let the current pressure value 𝑃𝑐𝑢𝑟at the present moment of time 𝑡pres   be divided by the average value 𝑃𝑎𝑣(𝑡) 

found in the historical interval 𝑡pres . The historical interval 𝑡pres is separated from the present moment of time 

𝑡pres by the buffer range of values 𝑇buf . In the course of dividing 𝑃𝑐𝑢𝑟  by Pcp(t), we obtain the coefficient Kx(t). 

Then the obtained coefficient is compared with the critical (threshold) value 𝑃𝑎𝑣(𝑡). The values 𝐾crit , 𝑡pres , 𝑇buf  are 

determined empirically based on archive data during the analysis and adjustment of the model. Then, in the process 

of comparing 𝐾𝑥  with 𝐾crit , two options are possible: 

1. If 𝐾𝑥  ≤ 𝐾crit , then the mode is "standard". 

In this case, the values and ranges are shifted one step to the right. The new 𝑃𝑎𝑣(𝑡) sliding is analyzed, the 

range windows 𝑇hist , 𝑇buf  also slide to the right by one value. Thus, 𝐾𝑥(𝑡) is calculated and compared with 𝐾crit  

in real time with continuous sliding to the right as new data is received with each new moment in time. 

2. If 𝐾𝑥(𝑡)  ≥ 𝐾crit , then the mode is "check". 

In this case, the sliding of the ranges 𝑇hist , 𝑇buf stops for a while, 𝑃𝑎𝑣(𝑡)becomes fixed 𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡). In this case, 

the sliding of 𝑃𝑐𝑢𝑟will continue in the interval of L of the following values. If, in the process of dividing the sliding 

𝑃𝑐𝑢𝑟  by the fixed 𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡)  in the interval of L, the following values, D values from the interval L, will be greater 

than or equal to 𝐾crit , it is considered that there is an anomaly. Otherwise, it is considered that there is noise in the 

data, and there is no anomaly. The values of L and D are also determined empirically during the model tuning. 

After executing the "check" mode, the model returns to the "standard" mode regardless of the check results, 

thus continuing to monitor the system in real time. 

An example of a model description using an arbitrary time series (Table 1): 
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Table 1. Conditional example of a pressure time series 

Time, t t₁ t₂ t₃ t₄ t₅ t₆ t₇ t₈ t₉ t₁₀ 

Pressure, P P₁ P₂ P₃ P₄ P₅ P₆ P₇ P₈ P₉ P₁₀ 

Time, t t₁₁ t₁₂ t₁₃ t₁₄ t₁₅ t₁₆ t₁₇ t₁₈ t₁₉ t₂₀ 

Pressure, P P₁₁ P₁₂ P₁₃ P₁₄ P₁₅ P₁₆ P₁₇ P₁₈ P₁₉ P₂₀ 

 

1. "Standard" mode 

1.1 For 𝑡𝑝𝑟𝑒𝑠  =  𝑡15we define the ranges 𝑇hist  , 𝑇buf and the value 𝑃𝑎𝑣(𝑡) on the interval 𝑇hist : 

 

𝑇hist = [𝑡1; 𝑡10] (1) 

𝑇buf = [𝑡11; 𝑡14] (2) 

𝑃𝑎𝑣(𝑡) =
1

10
∑ 𝑃𝑖

10

𝑖=1

 (3) 

2. Calculate 𝐾15: 

𝐾15 =
𝑃15

𝑃𝑎𝑣(𝑡) 
 (4) 

 

1.3 We compare 𝐾15and 𝐾crit . If  𝐾15 ≤  𝐾crit , the model remains in the "standard" mode, and further checking 

of the values in the sliding window is performed. In this case, for the next 𝑡𝑝𝑟𝑒𝑠  =  𝑡16, the new intervals 𝑇hist   and 

𝑇buf and the value 𝑃𝑎𝑣(𝑡) slide to the right by one value: 

𝑇hist = [𝑡2; 𝑡11] (5) 

𝑇buf = [𝑡12; 𝑡15] (6) 

𝑃𝑎𝑣(𝑡) =
1

10
∑ 𝑃𝑖

11

𝑖=2

 (7) 

𝐾16 =
𝑃16

𝑃𝑐𝑝(𝑡)
 (8) 

 

2. "Check" mode 

2.1 If 𝐾15 ≥ 𝐾crit , the model switches to the "check" mode. For the next 𝑡pres = 𝑡16 , the ranges 𝑇hist   and 

𝑇buf  stop sliding and 𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡)  is fixed based on the results of the previous calculation: 

𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡)   =
1

10
∑ 𝑃𝑖

10

𝑖=1

 (9) 

 

2.2 In this case 𝑃𝑐𝑢𝑟  continues to slide to the right for another L = 4 points. In this case 𝐾𝑥(𝑡) for 𝑡16, … , 𝑡19 

will be calculated as: 

𝐾16 =
𝑃16

𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡)  
, … , 𝐾19 =

𝑃19

𝑃𝑎𝑣 𝑓𝑖𝑥(𝑡)  
 (10) 

 

2.3 If at least D = 2 coefficients 𝐾𝑥(𝑡)from the interval L = 4 exceed 𝐾crit , the anomaly is confirmed. 

3. After performing the check (regardless of the result), a return to the "standard" mode occurs. New 𝑡pres =

𝑡20: 

𝑇hist = [𝑡6; 𝑡15] (11) 

𝑇buf = [𝑡6; 𝑡19] (12) 
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𝑃𝑎𝑣(𝑡)  =
1

10
∑ 𝑃𝑖

15

𝑖=6

 (13) 

𝐾20 =
𝑃20

𝑃𝑐𝑝(𝑡)
 (14) 

 

Results and Discussion 

 

The model was implemented experimentally in Python using the Pandas and Matplotlib libraries. Testing was 

performed on synthetic data similar to real data, simulating the dynamics of changes in the pressure time series 

with an interval of 15 minutes. The testing time range is one month. The automated system, developed based on 

the model prototype, identified 32 clusters of anomalies in the gas pressure time series. Clusters were formed by 

adjacent anomalous indicators within 2 hours (necessary to isolate the anomaly ranges instead of identifying a set 

of closely spaced anomalous points). In the process of setting up the model, the following parameters were defined: 

𝑇buf  = 15, 𝑇hist = 15,  L= 4, D = 2, 𝐾crit = 1.0015. The model successfully identified early signs of anomalies in the 

pressure time series. The monitoring range of the latest input data, L = 4, corresponds to a data analysis and 

decision-making time of 1 hour. As a result of the experiment and model tuning, it turned out that this time is the 

minimum required analysis window when making decisions in model conditions. In real-world fields, the analysis 

window is approximately 1 hour or 4 last input values of the time series (4 values of 15 minutes equal 1 hour). 

Thus, it can be assumed that the efficiency of analysis, speed, and accuracy of anomaly detection by the model 

should not be inferior to the efficiency and accuracy of anomaly detection by a person. Visualization of the 

experiment is presented in Fig. 5. 

We must note that the values on the vertical pressure axis are not displayed, as they may be related to a 

commercial secret. In the simulation, relative values were used, reflecting only the dynamics of changes. Within 

the framework of the model, such an approach is acceptable, since the calculation of the main parameters of the 

model is carried out through relative values. 

 

 
Fig. 5. Visualization of the anomaly detection model in pressure data in Python 

 

The anomalous ranges in Fig. 5 are highlighted with red areas. The beginnings of the anomalous zones are 

marked with dots. The moments of anomaly detection and their duration are presented in Table 2 

 
Table 2. Time ranges and duration of detected anomalous zones 

No Date/time of 

the anomaly 

start 

Date/time of 

end of anom-

aly 

Duration of 

anomalous 

zone (min) 

No Date/time of 

the anomaly 

start 

Date/time of 

end of 

anomaly 

Duration of 

anomalous 

zone (min) 

1 01.01/15:03 01.01/22:03 420 17 20.01/06:48 20.01/10:48 240 

2 02.01/09:03 02.01/13:33 270 18 20.01/20:18 21.01/00:18 240 

3 03.01/06:03 03.01/11:33 330 19 21.01/03:03 21.01/07:18 255 

4 04.01/04:33 04.01/04:48 15 20 24.01/20:33 24.01/22:48 135 

5 06.01/16:33 06.01/20:48 255 21 25.01/06:48 25.01/10:48 240 
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6 08.01/14:48 08.01/19:33 285 22 25.01/21:03 25.01/21:18 15 

7 12.01/08:18 12.01/10:18 120 23 26.01/05:18 26.01/07:33 135 

8 12.01/15:33 12.01/20:03 270 24 26.01/20:33 26.01/22:48 135 

9 14.01/15:33 14.01/19:33 240 25 27.01/02:18 27.01/02:48 30 

10 15.01/00:18 15.01/04:33 255 26 27.01/20:33 28.01/01:33 300 

11 15.01/23:03 16.01/03:48 285 27 29.01/08:33 29.01/13:03 270 

12 16.01/06:33 16.01/09:18 165 28 30.01/00:33 30.01/07:18 405 

13 17.01/10:33 17.01/15:33 300 29 30.01/18:03 31.01/00:33 390 

14 17.01/20:03 18.01/01:33 330 30 31.01/19:18 01.02/01:18 360 

15 18.01/19:03 19.01/01:48 405 31 01.02/12:03 01.02/13:33 90 

16 19.01/17:33 20.01/01:03 450 32 01.02/20:18 01.02/22:03 105 

 

Although the model quickly and accurately identified all the existing anomalies in the modeled data, it has a 

number of limitations. Some of the detected anomalies may not be signs of hydrate formation in the system. They 

may be associated with technological reasons, such as well starts and stops, and pressure redistribution in the 

system as a whole. In its current form, the model cannot be used to classify anomalies by the cause of the anomalies 

found. In essence, at the moment, the model performs the task of the "search for anomalies in well data" block of 

the first level of data analysis of the decision-making algorithm presented in Fig. 3. However, it is obvious that the 

model, even in its current form, has the potential for scaling. 

To implement automated analysis of the entire first level, it is necessary to add additional critical coefficients 

for starting and stopping the well, and apply the model to the time series of flow rates. At the next levels of the 

algorithm, it is necessary to add methods for comparing the parameters of time series with each other and finding 

correlations between the series. Within the framework of the existing data specifics, the time series of neighboring 

wells have a similar value profile. However, if anomalies are present, they may exhibit a shift in their signs over 

time or a different rate of development of anomalous indicators. In these conditions, one of the most promising 

methods for finding correlations is the method of dynamic transformation of the time scale (DTW). The use of this 

method and other approaches to comparing time series data seems to be a completely feasible task. 

 

Prospects for using machine learning to upgrade an existing model or create an alternative one 

Currently, the possibility of upgrading the presented model by using machine learning or even creating an 

alternative solution to the stages of the formal algorithm shown in Fig. 3 is being considered. Artificial intelligence 

can quite well solve problems related to the analysis of time series and provide the required solutions in various 

fields of application, including the oil and gas sector (Qin et al., 2019; Hanga et al., 2019; Paltrinieri et al., 2019). 

Obviously, the methods for optimizing the parameters 𝑇buf , 𝑇hist, D, L, which are now set empirically, based on 

statistics and expert estimates, can be applied to this model. In addition, the threshold method for determining 

anomalies through 𝐾crit can be replaced by machine learning algorithms capable of identifying complex patterns. 

In general, the use of machine learning, at least at some stages of the implementation of the developed formal 

algorithm, looks like a fairly promising solution. 

 

Conclusion 

 

This paper addresses the problem of hydrate formation in gas collection systems of gas fields. According to 

the hypothesis and arguments presented, the most promising solution is to create a model of automated analytics 

for the gas collection system, based on the principle of early problem detection. The purpose of the work was to 

create a prototype of such a system. In the process of implementing the set tasks, it was possible to develop a 

decision-making algorithm and create a mathematical model at the first level of this algorithm. 

The proposed mathematical module performs early detection of pressure anomalies, which may be a signal 

about the beginning of the hydrate formation process in the gas collection system. Calculation of the moving 

average value, use of the buffer interval, and introduction of the interval for confirming anomalies make the model 

resistant to noise and false alarms. At the same time, the use of the sliding window method allows for analyzing 

the system in real time. The model is adaptive, flexible, and easily scalable for working with other types of time 

series (flow rate, temperature) and various types of gas collection systems. Adaptability and versatility are 

achieved due to the ability to adjust the ranges 𝑇buf , 𝑇hist , D, L, as well as setting the parameter 𝐾crit . In addition, 

the model is quite simple to implement, does not require large computing power or deep modernization of 

equipment. The efficiency and scalability of the presented model are arguments confirming the possibility and 

economic feasibility of developing a comprehensive system for analyzing processes in gas collection equipment. 

A possible option for developing the idea is to use machine learning to create a hybrid method or even an alternative 

approach. 
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