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Abstract

The transition to sustainable development and the movement towards
carbon neutrality pose new challenges for the production of natural
gas, which is considered both a "transitional" and a "stable" fuel. In
the Arctic region, the formation of hydrates and ice plugs in gas col-
lection and treatment systems is a significant unresolved problem.
Implementing measures to prevent this can have a substantial impact
on gas production operating costs. The aim of this work is to develop
a prototype of an automated analytics system that detects pressure
anomalies early, potentially signaling the onset of hydrate formation
in the gas collection system. To solve this problem, the methods of
searching for anomalies and averaging data (sliding window, moving
average, threshold value) were used. The article highlights the short-
comings of existing approaches, which are associated with insuffi-
cient accuracy of modeling due to the complexity and multifactorial
nature of hydrate formation, increased measurement error, imperfec-
tion of devices, and communication channels of sensors with the con-
trol panel. The study subject is a gas collection system. In the process
of implementing the tasks, a decision-making algorithm was devel-
oped, and a mathematical model was developed at the first level of
this algorithm, which is adaptive, flexible, and easily scalable for
working with other types of time series of parameters (flow rate, tem-
perature), as well as various types of gas collection systems. A math-
ematical description of the developed model was presented. The pos-
sibility of scaling and developing the idea was demonstrated, along
with the feasibility and possibility of its implementation. The results
of experimental verification are also given.
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natural gas, gas hydrate, ice plug, early detection, gas collection sys-
tem, automation.
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Introduction

Natural gas plays a significant role in the global energy sector due to its versatility of application — as an
energy source (gas-fired power plants have high efficiency and quick start-up, which makes them ideal for covering
peak loads and balancing power systems with a high share of renewable energy), as a mass source of heat (due to
its high environmental friendliness — gas contains virtually no sulfur and particulate matter), as a raw material for
the production of fertilizers and plastics, as a source of transport fuel alternative to gasoline and diesel fuel
(Cherevko et al., 2024). Therefore, achieving the Sustainable Development Goals related to carbon neutrality and
climate stability, coupled with ensuring universal access to cheap energy, inevitably preserves the role of natural
gas as the main "transitional" fuel in the 21st century (Lukyanenok et al., 2023; Zonova et al., 2024). Therefore,
investments in natural gas production have also increased by 8-11% annually over the past 2 decades (Gerasimova,
2024). At the same time, the growth of global gas consumption is obvious (Fig. 1), and existing forecasts indicate
growth prospects by 2050 by 1.10-1.25 times, depending on the "NetZero” and "Rational technological choice”
scenarios (Energy Insights, 2021).
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Fig. 1. World dynamics of natural gas production, bcm (World Energy & Climate Statistics, 2024)

The growth of global consumption of natural gas raises the question of developing reserves located in the
Arctic and adjacent zones, with a proven volume of about 50 trillion cubic meters (Fig. 2).
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Fig. 2. World distribution of proven natural gas reserves, trillion cubic meters (Our World in Data, 2023)

Overall, the Arctic contains 13% of the world's probable oil reserves and 30% of natural gas, with 80% of the
total hydrocarbons located offshore (Shutko et al., 2024). Given that the average annual temperature in the Arctic
is -12 0C, greater attention will be paid to maintaining the operation of gas production equipment in low-
temperature conditions.
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In particular, the relevance of research on counteracting the process of hydrate formation in natural gas pro-
duction systems is increasing, which includes two directions: preventing the formation of hydrates and eliminating
those already formed (Makwashi et al., 2021).

Natural gas hydrates are solid crystalline compounds formed under certain thermobaric conditions from water
and low molecular weight gas. The thermodynamics and kinetics of the hydrate formation process have been
studied quite well (Rasoolzadeh et al., 2025). In general, the hydrate formation process consists of the appearance
of the first signs of crystallization and the stage of sorption growth of the crystal around the nucleus. In Arctic
conditions, the formation of hydrates and ice plugs in gas collection and treatment systems is one of the most
significant and unresolved problems (Bogoyavlensky et al., 2019; Giustiniani et al., 2013; Marin-Moreno et al.,
2016). Elimination of this complication is difficult, and the costs of measures to prevent it constitute a significant
part of the cost of gas production (Sa et al., 2019).

Mathematical models describing the properties of hydrates, as well as the thermodynamics of their formation
and growth, are quite complex and include many factors and conditions (Shostak, 2022; Musakaev et al., 2024).

The processes occurring in the collection and preparation system, including hydrate formation processes, are
dynamic, and it can be added that the parameters for which operational information is available are extremely
limited in field conditions and are reduced to monitoring the gas pressure at the well outlet, temperature, and gas
flow at several well points along process communications of tens of kilometers. Wind speed in specific areas, wear
of thermal insulation, the amount of deposits inside pipelines, and many other parameters remain unknown (Save-
nok et al., 2024).

There is measurement error, imperfection of devices, and communication channels of sensors with the control
panel. Obviously, the combination of the described factors results in extremely limited capabilities for collecting
data on the system as a whole, leading to a significant data error. In addition to the processes of hydrate formation
itself in gas collection equipment, at the later stages of development, processes of ice formation occur directly
(Xiao et al., 2023; Shahbazi et al., 2009), which introduces additional uncertainty when trying to model the pro-
cesses occurring in the system. In this regard, it is extremely difficult to prevent the complication in question by
means of forecasting based on physicochemical modeling of processes.

The issue of applicability and accuracy of predictive models based on physicochemical modeling of the hy-
drate formation process is raised in a number of studies (Karakose et al., 2024; Niu, 2024). The authors of these
works conclude that such modeling is unacceptable for solving the problem of operational hydrate detection in
field conditions (Patri et al., 2014).

After reviewing the most common approaches, it is concluded that to date, no universal method has been
found for predicting or early detection of hydrate formation in a pipeline that would provide very high accuracy
with minimal costs for processing and obtaining information [ Volovetskyi et al., 2023; Tang et al., 2024)

At the same time, systems working with empirical data in real time are being implemented at Arctic fields.
Currently, a system for autonomous dosing of methanol is being successfully tested. The consumption of methanol
depends on gas production indicators, which essentially constitutes an automated system for the early detection of
changes in gas production parameters and an autonomous response to these changes (Prakhova et al., 2016).

The work on detection and elimination of gas hydrates and ice plugs is one of the key tasks for the process
personnel of the facilities. This operation involves personnel analyzing a large array of data from devices installed
along the entire well production collection system to make informed decisions. Due to the complexity and
dynamism of the system, analytical work focuses on the early detection of anomalies in pressure and temperature
trends, as well as the interpretation of detected deviations. Considering that all data is digital information, the idea
of creating a model for automated analysis of the state of the gas collection system seems logical. The use of such
an approach will allow moving away from unsuccessful attempts to create predictive physical and chemical models
that are extremely demanding of the completeness and accuracy of information about the system. Instead, it is
proposed to build a model that will work with statistical data, limited but sufficient for early detection of
complications.

Considering this, the research objective is to optimize the data processing processes of field gas collection
systems by automating the technological process at field "X".

Accordingly, the research object, the tasks that need to be solved include the following:

e develop algorithmic rules for the model's operation in the conditions of field data collection, based on real
analytics.

e develop a mathematical model capable of performing operations for the early detection of data anomalies at
the level of gas well operation.

The prototype of the mathematical model will demonstrate the fundamental possibility of implementing a
full-fledged model of automated analytics of the entire gas collection system.
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Formalization of the analytical process

To solve the first problem, it was necessary to determine which key actions of production personnel can be
formalized and reduced to a strict algorithm. In solving this problem, several methods were employed, including
observing personnel actions, synthesizing key aspects into a single system, abstracting from secondary tasks,
classifying information, and using induction and deduction to establish logical connections in the final formal
algorithm. In the course of the work, it became clear that data analytics is performed at different levels of the gas
collection system. The first level of analysis is the level of gas well performance indicators, providing the bulk of
the initial information. In the process, personnel identify abnormal changes in the time series of pressure and gas
flow. By the nature of these changes, several causes of anomalies can be determined, including hydrate formation.
If information at the well level is insufficient, a transition to a higher level of analysis is made — the level of a well
cluster. At this level, a comparison of the parameters of gas wells located within the same cluster is performed. If
the analysis at the well cluster level also does not allow the exact cause of the anomaly to be determined, the
transition to two higher levels is performed — the gas collection manifold and the gas collection system. Ultimately,
the exact cause of the anomaly will be determined at one of the levels.

The analytics described above is formalized and summarized in a single decision-making algorithm consisting
of 4 levels: Level 1 — "gas well ", Level 2 — "cluster of well ”, Level 3 — "gas collection manifold”, Level 4 — "gas
collection system” (Fig. 3). These levels reflect the hierarchy of the main operational blocks and all possible signals
about the causes and prerequisites of anomalies (yellow and gray blocks).
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Fig. 3. Scheme of the solution algorithm and hierarchy of analysis levels
Development of a prototype of an automated analytics model

The implementation of the solution algorithm's steps must begin with developing a basic prototype — a starting
mathematical model. Such a model could serve as a starting point for implementing a complex system and
demonstrating the fundamental feasibility of a full-fledged project.

The first stage of well-level analysis is searching for anomalies in pressure and flow rate time series. In field
conditions, this analysis is performed by visually viewing the relevant trends and finding sharp deviations. To
create a mathematical description of this process, it is necessary to develop a model based on time series anomaly
detection methods. In the process of developing the model, the difficulties associated with the dynamics of the gas
gathering system were taken into account. The technological operating mode is constantly changing under the
influence of seasonality, daily temperature differences, changes in system parameters as specified by the
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dispatcher, and other factors. In this regard, it was decided to reduce some of the data to relative values. It was
decided to use the "sliding window" method to perform real-time data analysis. The threshold method was used to
identify critical changes. In addition, the input data contains a high level of error, which leads to significant noise
in the time series. To eliminate this problem, it is proposed to use the data smoothing method — "moving average",
thereby creating a hybrid model for searching for anomalies in real time on noisy data in a dynamic system.

The model is designed for the analysis of pressure time series, but is equally applicable to the analysis of
other time series coming to the control panel of the gas collection system. The model contains the following
parameters:

Let's display some parameters of the model on the trend of an arbitrary pressure time series (Fig. 4):

P.,, —measured pressure at the current time ¢, .

Thise — length of the historical interval (number of points used for averaging — empirically set).

T, — buffer interval between historical and current data (empirically set).

K. — critical anomaly threshold (empirically set).

P,,(t) — average pressure over the historical interval.

K, (t) —anomaly coefficient determining the deviation of the current pressure from the norm.

L — length of the verification interval (number of points analyzed after exceeding the threshold — empi-

rically set).

e D —number of K, (t) values exceeding K, in interval L, at which the situation is classified as anoma-
lous (empirically set).

Pressure, P

Peur ...

Thist Tout i L

tores

Time, t

Time series of pressures from time to the present

_ Arbitrary extrapolation of a pressure series over time to the next L moments of
time
Fig. 4. Arbitrary time series of pressures with some model parameters indicated

Let the current pressure value F,,,-at the present moment of time t,,..; be divided by the average value P, (t)
found in the historical interval t,. . The historical interval t,. is separated from the present moment of time
tores DY the buffer range of values Ty,¢. In the course of dividing P, by Pg(f), we obtain the coefficient Ki(#).
Then the obtained coefficient is compared with the critical (threshold) value Fy,, (t). The values Kyt , Epres » Tpur are
determined empirically based on archive data during the analysis and adjustment of the model. Then, in the process
of comparing K, with K, , two options are possible:

1. If K. < K¢ , then the mode is "standard".

In this case, the values and ranges are shifted one step to the right. The new P, (t) sliding is analyzed, the
range windows Tygc , Thur also slide to the right by one value. Thus, K, (t) is calculated and compared with K
in real time with continuous sliding to the right as new data is received with each new moment in time.

2. If K, (t) > K, , then the mode is "check".

In this case, the sliding of the ranges T , Ty stops for a while, P, (t)becomes fixed Py, £ (t). In this case,
the sliding of P, will continue in the interval of L of the following values. If, in the process of dividing the sliding
Py by the fixed Pgy £ix(t) in the interval of L, the following values, D values from the interval L, will be greater
than or equal to K , it is considered that there is an anomaly. Otherwise, it is considered that there is noise in the
data, and there is no anomaly. The values of L and D are also determined empirically during the model tuning.

After executing the "check" mode, the model returns to the "standard" mode regardless of the check results,
thus continuing to monitor the system in real time.

An example of a model description using an arbitrary time series (Table 1):
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Table 1. Conditional example of a pressure time series
Time, t t [£] t; 2] s s t; s ] to
PV@‘SSMV@, P P; P- Ps Ps Ps Ps P Ps Ps Pio
Time, t 471 [#7] t13 t14 tis ti6 ti7 tis ty 120
Pressure, P P P Pis P14 Pis Pis Py Pis Pio P20

1. "Standard" mode
1.1 For tyes = tyswe define the ranges Tyis , Tpye and the value Py, (t) on the interval Tyg, :

Thist = [t15 t1o] (1)
Tour = [t115 t1a] (2)
1 10
Pu(®) =75 D P G
i=1
2. Calculate K;5:
Pys
Kic = 4

1.3 We compare K zand K;; . If K35 < K , the model remains in the "standard" mode, and further checking
of the values in the sliding window is performed. In this case, for the next t,,..s = t16, the new intervals Ty, and

Tyur and the value P, (t) slide to the right by one value:
Thise = [t2; t14] (5)
Tous = [t12; t1s] (6)

1 11
P (t) = EZPL'
i=2

Py
Kig = m (®)

Q)

2. "Check" mode
2.1 If K;5 = K¢ , the model switches to the "check” mode. For the next t,..s = t;6 , the ranges Ty and

Tyy¢ stop sliding and Pg, £ix(t) is fixed based on the results of the previous calculation:

10
1
Pay jix(®) =15 P ©)
i=1

2.2 In this case P, continues to slide to the right for another L = 4 points. In this case K, (t) for tyg, ..., t19

will be calculated as:
P
19 (10)

Py
Keg=—"""—,...Kjg=—"""
16 Pav fix(t) v Pav fix(t)

2.3 If at least D = 2 coefficients K, (t)from the interval L = 4 exceed K, , the anomaly is confirmed.
3. After performing the check (regardless of the result), a return to the "standard" mode occurs. New t,.os =

(11)

(12)

tyo:
Thist = [te; tis]

Tyur = [te; t1o]
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15
Pav(t) E GPi (13)
i=
P20
K, =
20 Pcp(t) (14)

Results and Discussion

The model was implemented experimentally in Python using the Pandas and Matplotlib libraries. Testing was
performed on synthetic data similar to real data, simulating the dynamics of changes in the pressure time series
with an interval of 15 minutes. The testing time range is one month. The automated system, developed based on
the model prototype, identified 32 clusters of anomalies in the gas pressure time series. Clusters were formed by
adjacent anomalous indicators within 2 hours (necessary to isolate the anomaly ranges instead of identifying a set
of closely spaced anomalous points). In the process of setting up the model, the following parameters were defined:
Tour =15, Tyt = 15, L=4, D=2, K;= 1.0015. The model successfully identified early signs of anomalies in the
pressure time series. The monitoring range of the latest input data, L = 4, corresponds to a data analysis and
decision-making time of 1 hour. As a result of the experiment and model tuning, it turned out that this time is the
minimum required analysis window when making decisions in model conditions. In real-world fields, the analysis
window is approximately 1 hour or 4 last input values of the time series (4 values of 15 minutes equal 1 hour).
Thus, it can be assumed that the efficiency of analysis, speed, and accuracy of anomaly detection by the model
should not be inferior to the efficiency and accuracy of anomaly detection by a person. Visualization of the
experiment is presented in Fig. 5.

We must note that the values on the vertical pressure axis are not displayed, as they may be related to a
commercial secret. In the simulation, relative values were used, reflecting only the dynamics of changes. Within
the framework of the model, such an approach is acceptable, since the calculation of the main parameters of the
model is carried out through relative values.

Pressure

Anomaly range
@® Anomaly end

Time

e o o> o>
%;,pﬁ \’\o&po 'Lgé_po 1‘3),_00

Fig. 5. Visualization of the anomaly detection model in pressure data in Python
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The anomalous ranges in Fig. 5 are highlighted with red areas. The beginnings of the anomalous zones are
marked with dots. The moments of anomaly detection and their duration are presented in Table 2

Table 2. Time ranges and duration of detected anomalous zones

No | Date/time of | Date/time of | Duration of | No | Date/time of | Date/time of | Duration of
the anomaly | end of anom- | anomalous the anomaly end of anomalous
start aly zone (min) start anomaly zone (min)
1 01.01/15:03 01.01/22:03 420 17 | 20.01/06:48 | 20.01/10:48 240
2 02.01/09:03 02.01/13:33 270 18 | 20.01/20:18 | 21.01/00:18 240
3 03.01/06:03 03.01/11:33 330 19 | 21.01/03:03 | 21.01/07:18 255
4 04.01/04:33 04.01/04:48 15 20 | 24.01/20:33 | 24.01/22:48 135
5 06.01/16:33 06.01/20:48 255 21 | 25.01/06:48 | 25.01/10:48 240

577




Yulia MAXIMOVA et al. / Acta Montanistica Slovaca, Volume 30 (2025), Number 3, 571-580

6 08.01/14:48 08.01/19:33 285 22 | 25.0121:03 | 25.01/21:18 15
7 12.01/08:18 12.01/10:18 120 23 | 26.01/05:18 | 26.01/07:33 135
8 12.01/15:33 12.01/20:03 270 24 | 26.01/20:33 | 26.01/22:48 135
9 14.01/15:33 14.01/19:33 240 25 | 27.01/02:18 | 27.01/02:48 30
10 | 15.01/00:18 15.01/04:33 255 26 | 27.01/20:33 | 28.01/01:33 300
11 | 15.01/23:03 16.01/03:48 285 27 | 29.01/08:33 | 29.01/13:03 270
12 | 16.01/06:33 16.01/09:18 165 28 | 30.01/00:33 | 30.01/07:18 405
13 | 17.01/10:33 17.01/15:33 300 29 | 30.01/18:03 | 31.01/00:33 390
14 | 17.01/20:03 18.01/01:33 330 30 | 31.01/19:18 | 01.02/01:18 360
15 | 18.01/19:03 19.01/01:48 405 31 | 01.02/12:03 | 01.02/13:33 90
16 | 19.01/17:33 20.01/01:03 450 32 | 01.02/20:18 | 01.02/22:03 105

Although the model quickly and accurately identified all the existing anomalies in the modeled data, it has a
number of limitations. Some of the detected anomalies may not be signs of hydrate formation in the system. They
may be associated with technological reasons, such as well starts and stops, and pressure redistribution in the
system as a whole. In its current form, the model cannot be used to classify anomalies by the cause of the anomalies
found. In essence, at the moment, the model performs the task of the "search for anomalies in well data" block of
the first level of data analysis of the decision-making algorithm presented in Fig. 3. However, it is obvious that the
model, even in its current form, has the potential for scaling.

To implement automated analysis of the entire first level, it is necessary to add additional critical coefficients
for starting and stopping the well, and apply the model to the time series of flow rates. At the next levels of the
algorithm, it is necessary to add methods for comparing the parameters of time series with each other and finding
correlations between the series. Within the framework of the existing data specifics, the time series of neighboring
wells have a similar value profile. However, if anomalies are present, they may exhibit a shift in their signs over
time or a different rate of development of anomalous indicators. In these conditions, one of the most promising
methods for finding correlations is the method of dynamic transformation of the time scale (DTW). The use of this
method and other approaches to comparing time series data seems to be a completely feasible task.

Prospects for using machine learning to upgrade an existing model or create an alternative one

Currently, the possibility of upgrading the presented model by using machine learning or even creating an
alternative solution to the stages of the formal algorithm shown in Fig. 3 is being considered. Artificial intelligence
can quite well solve problems related to the analysis of time series and provide the required solutions in various
fields of application, including the oil and gas sector (Qin et al., 2019; Hanga et al., 2019; Paltrinieri et al., 2019).
Obviously, the methods for optimizing the parameters Ty, Thise, D, L, which are now set empirically, based on
statistics and expert estimates, can be applied to this model. In addition, the threshold method for determining
anomalies through K can be replaced by machine learning algorithms capable of identifying complex patterns.
In general, the use of machine learning, at least at some stages of the implementation of the developed formal
algorithm, looks like a fairly promising solution.

Conclusion

This paper addresses the problem of hydrate formation in gas collection systems of gas fields. According to
the hypothesis and arguments presented, the most promising solution is to create a model of automated analytics
for the gas collection system, based on the principle of early problem detection. The purpose of the work was to
create a prototype of such a system. In the process of implementing the set tasks, it was possible to develop a
decision-making algorithm and create a mathematical model at the first level of this algorithm.

The proposed mathematical module performs early detection of pressure anomalies, which may be a signal
about the beginning of the hydrate formation process in the gas collection system. Calculation of the moving
average value, use of the buffer interval, and introduction of the interval for confirming anomalies make the model
resistant to noise and false alarms. At the same time, the use of the sliding window method allows for analyzing
the system in real time. The model is adaptive, flexible, and easily scalable for working with other types of time
series (flow rate, temperature) and various types of gas collection systems. Adaptability and versatility are
achieved due to the ability to adjust the ranges Tyr, Thist » D> L, as well as setting the parameter K, . In addition,
the model is quite simple to implement, does not require large computing power or deep modernization of
equipment. The efficiency and scalability of the presented model are arguments confirming the possibility and
economic feasibility of developing a comprehensive system for analyzing processes in gas collection equipment.
A possible option for developing the idea is to use machine learning to create a hybrid method or even an alternative
approach.
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